Nothing
addOutlierInfo<-function(metab.col, in.data, outlier.sd.thresh=2){
##################################################################################
#This function adds a column to a dataframe of metabolite
#abundance values indicating whether a observations
#for a specific metabolite are outliers
#
#Arguments:
#
#metab.col: A character value indicating the name of the target variable
# in the input data set that corresponds to metabolite abundance.
#
#in.data: a data frame containing the variable specified in argument metab.col
#
#outlier.sd.thresh: The number of standard deviations from the mean metabolite
# abundance an observation must be to be considered an outlier.
###########################################################################################
#make sure input is a data frame
in.data<-as.data.frame(in.data)
#get metabolite mean and standard deviation
metab.vec<-in.data[ , metab.col]
non.inf.metab.vec<-metab.vec[!is.infinite(metab.vec)]
mean.val<-mean(non.inf.metab.vec, na.rm=TRUE)
sd.val<-sd(non.inf.metab.vec, na.rm=TRUE)
#identify outliers
outlier.rows<- !is.na(metab.vec) & !is.infinite(metab.vec) &
(metab.vec > mean.val + outlier.sd.thresh*sd.val | metab.vec < mean.val - outlier.sd.thresh*sd.val)
#add in outlier data
in.data$outlier<-outlier.rows
return(in.data)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.