R/selectAnchors.R

Defines functions selectAnchors iterativeAnchorSelection identityAnchorSelection

Documented in identityAnchorSelection iterativeAnchorSelection selectAnchors

##Functions for selecting ordered pairs for retention time fitting

##
#' @title Select Matching Ids as Anchors
#'
#' @description
#' This is an optional helper function for \code{selectAnchors}. Uses identities
#' to guide selection of ordered retention time pairs. If useID option is set to
#' TRUE, it will select pairs of features with matching ID character strings
#' before proceeding with iterative anchor selection.
#'
#' @param cTable  data frame, contains only feature ids, mzs, rts, Qs, & labels
#'
#' @param windx numeric positive retention time exclusion window in X dataset
#'
#' @param windy numeric positive retention time exclusion window in Y dataset
#'
#' @param useID logical. Operation proceeds if TRUE, terminates otherwise.
#'
#' @param brackets If useID = TRUE, bracketed identity strings of the types
#' included in this argument will be ignored
#'
#' @return combinedTable with updated anchor labels
#'
#' @details Identity anchors are allowed to violate constraints of m/z, Q, and
#' rtq difference tolerances, and will not be removed if they fall within a rt
#' exclusion window of other features. If a name appears more than once, only
#' the pair with the highest relative abundance is selected.
#'
#' @seealso
#' \code{\link{selectAnchors}}
#'
##
identityAnchorSelection <- function(cTable, windx, windy, useID, brackets)
{
    if(!useID)
        return(cTable)

    cTable[["labels"]] = compare_strings(cTable[["idx"]],
                                        cTable[["idy"]],
                                        "I", "P", brackets)

    if(any(cTable[["labels"]] == "I"))
    {
        #retain most abundant representation, remove duplicates
        xTable <- dplyr::mutate(cTable,
                                `row` = seq(1,nrow(cTable)),
                                `idx` = tolower(.data$idx)) %>%
                dplyr::filter(.data$labels == "I") %>%
                dplyr::arrange(dplyr::desc(.data$Qx+ .data$Qy)) %>%
                dplyr::filter(duplicated(.data$idx))

        cTable$labels[xTable[["row"]]] <- "N"

        ids <- which(cTable[["labels"]] == "I")

        cTable[["labels"]] <- .Call("selectAnchorsByID",
                                    labels = cTable[["labels"]],
                                    ids = ids,
                                    rtx = cTable[["rtx"]],
                                    rty = cTable[["rty"]],
                                    windx = windx,
                                    windy = windy,
                                    PACKAGE = "metabCombiner")
    }

    return(cTable)
}

#' @title Iterative Selection of Ordered Pairs
#'
#' @description
#' This is a helper function for \code{selectAnchors}. Anchors are iteratively
#' selected from highly abundant feature pairs, subject to feature m/z, rt, & Q
#' constraints set by the user.
#'
#' @param cTable  data frame, contains only feature ids, mzs, rts, Qs, & labels
#'
#' @param windx numeric positive retention time exclusion window in X dataset.
#'
#' @param windy numeric positive retention time exclusion windown in Y dataset.
#'
#' @param swap  logical. When FALSE, searches for abundant features in dataset
#' X, complemented by dataset Y features; when TRUE, searches for abundant
#' features in dataset Y, complemented by dataset X features.
#'
#' @return
#' data frame of anchor feature alignments.
#'
#'@seealso
#' \code{\link{selectAnchors}}
##
iterativeAnchorSelection <- function(cTable, windx, windy, swap = FALSE){
    if(swap)
        cTable[["labels"]] <- .Call("selectIterativeAnchors",
                                    labels = cTable[["labels"]],
                                    rtx = cTable[["rty"]],
                                    rty = cTable[["rtx"]],
                                    Qx = cTable[["Qy"]],
                                    Qy = cTable[["Qx"]],
                                    windx = windy,
                                    windy = windx,
                                    PACKAGE = "metabCombiner")
    else
        cTable[["labels"]] <- .Call("selectIterativeAnchors",
                                    labels = cTable[["labels"]],
                                    rtx = cTable[["rtx"]],
                                    rty = cTable[["rty"]],
                                    Qx = cTable[["Qx"]],
                                    Qy = cTable[["Qy"]],
                                    windx = windx,
                                    windy = windy,
                                    PACKAGE = "metabCombiner")


    cTable <- dplyr::filter(cTable, .data$labels != "N")

    return(cTable)
}

#' @title Select Anchors for Nonlinear RT Model
#'
#' @description
#' A subset of possible alignments in the \code{combinedTable} are used as
#'     ordered pairs to anchor a retention time projection model. Alignments of
#'     abundant features are prominent targets for anchor selection, but shared
#'     identified features (i.e. feature pairs where idx = idy) may be used.
#'
#' @param object metabCombiner object.
#'
#' @param useID logical. Option to first search for IDs as anchors.
#'
#' @param tolmz numeric. m/z tolerance for prospective anchors
#'
#' @param tolQ numeric. Quantile Q tolerance for prospective anchors
#'
#' @param tolrtq numeric. Linear RT quantile tolerance for prosepctive anchors.
#'
#' @param windx numeric. Retention time exclusion window around each anchor in
#'     X dataset. Optimal values are between 0.01 and 0.05 min (1-3s)
#' @param windy numeric. Retention time exclusion window around each anchor in
#'     dataset Y. Optimal values are between 0.01 and 0.05 min (1-3s)
#' @param brackets_ignore If useID = TRUE, bracketed identity strings of the
#'     types included in this argument will be ignored.
#' @details
#' In order to map between two sets of retention times, a set of ordered pairs
#'     need to be selected for the spline fit. This function relies on mutually
#'     abundant features to select these ordered pairs. In iterative steps, the
#'     most abundant (as indicated by Q value) in one dataset is selected along
#'     with its counterpart, and all features within some retention time window
#'     specified by \code{windx} & \code{windy} arguments are excluded. This
#'     process is repeated until all features have been considered.
#'
#' \code{tolQ} & \code{tolmz} arguments restrict to feature pairs that have
#'     differences in Q & m/z within these tolerances. \code{tolrtq} further
#'     limits to feature pairs those with relative differences in linear
#'     retention time quantiles, calculated as
#'     \eqn{rtqx = (rtx - min(rtx)) / (max(rtx) - min(rtx))} &
#'     \eqn{rtqy = (rty - min(rty)) / (max(rty) - min(rty))}
#'
#' Shared identities (in which idx & idy columns have matching, non-empty &
#'     non-bracketed strings) may be used if \code{useID} is set to TRUE. In
#'     this case, shared identities will be searched first and will not be
#'     subject to any of the restrictions in m/z, Q, or rt. The iterative
#'     process proceeds after processing of shared identities.
#'
#' @return \code{metabCombiner} object with updated \code{anchors} slot. This
#'     is a data.frame of feature pairs that shall be used to map between
#'     retention times using a GAM or LOESS model.
#'
#' \item{idx}{identities of features from dataset X}
#' \item{idy}{identities of features from dataset Y}
#' \item{mzx}{m/z values of features from dataset X}
#' \item{mzy}{m/z values of features from dataset Y}
#' \item{rtx}{retention time values of features from dataset X}
#' \item{rty}{retention time values of features from dataset Y}
#' \item{rtProj}{model-projected retention time values from X to Y}
#' \item{Qx}{abundance quantile values of features from dataset X}
#' \item{Qy}{abundance quantile values of features from dataset Y}
#' \item{adductX}{adduct label of features from dataset X}
#' \item{adductY}{adduct label of features from dataset Y}
#' \item{group}{m/z feature group of feature pairing}
#' \item{labels}{anchor labels; "I" for identity, "A" for normal anchors}
#'
#' @examples
#' data(plasma30)
#' data(plasma20)
#'
#' p30 <- metabData(plasma30, samples = "CHEAR")
#' p20 <- metabData(plasma20, samples = "Red", rtmax = 17.25)
#' p.comb <- metabCombiner(xdata = p30, ydata = p20, binGap = 0.005)
#'
#' ##example 1 (no known IDs used)
#' p.comb <- selectAnchors(p.comb, tolmz = 0.003, tolQ = 0.3, windx = 0.03,
#'     windy = 0.02, tolrtq = 0.3)
#'
#' ##example 2 (known IDs used)
#' p.comb <- selectAnchors(p.comb, useID = TRUE, tolmz = 0.003, tolQ = 0.3)
#'
#' ##To View Plot of Ordered Pairs
#' anchors = getAnchors(p.comb)
#' plot(anchors$rtx, anchors$rty, main = "Selected Anchor Ordered Pairs",
#'     xlab = "rtx", ylab = "rty")
#'
#' @seealso
#' \code{\link{getAnchors}}, \code{\link{fit_gam}}, \code{\link{fit_loess}}
#'
#' @export
selectAnchors <- function(object, useID = FALSE, tolmz = 0.003, tolQ = 0.3,
    tolrtq = 0.5, windx = 0.03, windy = 0.03,
    brackets_ignore = c("(", "[", "{")) {
    combinerCheck(isMetabCombiner(object), "metabCombiner")

    pars <- list(tolmz, tolQ, tolrtq, windx, windy)
    if(any(vapply(pars, function(p) !is.numeric(p), logical(1))))
        stop("arguments tolmz, tolQ, tolrtq, windx & windy must be numeric")

    if(any(vapply(pars, function(p) p <= 0, logical(1))))
        stop("arguments tolmz, tolQ, tolrtq, windx & windy must be positive")

    if(!is.logical(useID)) stop("expected logical value for argument 'useID'")

    cTable <- combinedTable(object)[,seq(1,15)]

    rte <- c(min(cTable$rtx), min(cTable$rty), max(cTable$rtx), max(cTable$rty))

    cTable <- dplyr::select(cTable, -.data$score, -.data$rankX,-.data$rankY) %>%
            dplyr::mutate(`rtqx` = (.data$rtx - rte[1])/ (rte[3] - rte[1]),
                        `rtqy` = (.data$rty - rte[2])/ (rte[4] - rte[2]),
                        `labels` = rep("P", nrow(cTable)))

    cTable <- identityAnchorSelection(cTable, windx = windx, windy = windy,
                                    useID = useID, brackets = brackets_ignore)

    cTable <- dplyr::filter(cTable, (abs(.data$mzx - .data$mzy) < tolmz &
                                    abs(.data$Qx - .data$Qy) < tolQ &
                                    abs(.data$rtqx - .data$rtqy) < tolrtq &
                                    .data$labels != "N") |.data$labels == "I")

    anchorlistXY <- iterativeAnchorSelection(cTable = cTable, windx = windx,
                                            windy = windy, swap = FALSE)
    anchorlistYX <- iterativeAnchorSelection(cTable = cTable,windx = windx,
                                            windy = windy, swap = TRUE)
    anchorlist <- dplyr::intersect(anchorlistXY, anchorlistYX) %>%
                    dplyr::select(-.data$rtqx, -.data$rtqy)

    if(nrow(anchorlist) < 20)
        warning("number of anchors less than 20; ",
                "consider alternative parameters or using identities.")

    object <- update_mc(object, anchors = anchorlist)
    return(object)
}

Try the metabCombiner package in your browser

Any scripts or data that you put into this service are public.

metabCombiner documentation built on Dec. 10, 2020, 2 a.m.