Nothing
"maSigPro" <-
function (data, edesign, matrix = "AUTO", groups.vector = NULL,
degree = 2, time.col = 1, repl.col = 2, group.cols = c(3:ncol(edesign)),
Q = 0.05, alfa = Q, nvar.correction = FALSE,
step.method = "backward", rsq = 0.7, min.obs = 3, vars = "groups",
significant.intercept = "dummy", cluster.data = 1, add.IDs = FALSE, IDs = NULL,
matchID.col = 1, only.names = FALSE, k = 9,
cluster.method = "hclust", distance = "cor",
agglo.method = "ward.D", iter.max = 500, summary.mode = "median",
color.mode = "rainbow", trat.repl.spots = "none", index = IDs[,
(matchID.col + 1)], match = IDs[, matchID.col], rs = 0.7,
show.fit = TRUE, show.lines = TRUE, pdf = TRUE, cexlab = 0.8,
legend = TRUE, main = NULL, ...)
{
if (matrix == "AUTO") {
print("running design")
design <- make.design.matrix(edesign = edesign, degree = degree,
time.col = time.col, repl.col = repl.col, group.cols = group.cols)
dis <- design$dis
groups.vector <- design$groups.vector
}
else {
design = (dis <- matrix)
groups.vector <- groups.vector
}
cluster.algorithm <- NULL
groups <- unique(groups.vector)
STOP = FALSE
print("running p.vector")
fit <- p.vector(data = data, design = design, Q = Q, min.obs = min.obs)
if (is.null(fit$SELEC) || nrow(fit$SELEC) == 0) {
summary <- c("no significant genes")
print("maSigPro halted at p.vector")
output <- list(summary, fit$dat, fit$G, edesign, dis,
fit$min.obs, fit$p.vector, Q)
names(output) <- c("summary", "input.data", "G", "edesign",
"dis", "min.obs", "p.vector", "Q")
STOP = TRUE
}
if (!STOP) {
print("running T.fit")
tstep <- T.fit(data = fit, step.method = step.method,
min.obs = min.obs, alfa = alfa, nvar.correction = nvar.correction)
if (is.null(tstep$sol) || nrow(tstep$sol) == 0) {
summary <- c("no significant genes")
print("maSigPro halted at tstep")
output <- list(summary, fit$dat, fit$G, edesign,
dis, fit$min.obs, fit$p.vector, tstep$variables,
tstep$g, fit$alfa, step.method, Q, alfa, tstep$influ.info)
names(output) <- c("summary", "input.data", "G",
"edesign", "dis", "min.obs", "p.vector", "variables",
"g", "p.vector.alfa", "step.method", "Q", "step.alfa",
"influ.info")
STOP = TRUE
}
if (!STOP) {
print("running get.siggenes")
got.genes <- get.siggenes(tstep, vars = vars, significant.intercept = significant.intercept,
rsq = rsq, groups.vector = groups.vector, add.IDs = add.IDs,
IDs = IDs, matchID.col = matchID.col, only.names = only.names,
trat.repl.spots = trat.repl.spots, index = index,
match = match)
summary <- got.genes$summary
sig.genes <- got.genes$sig.genes
sig.genes <- sig.genes
if (!is.null(sig.genes)) {
if (pdf) {
if (!is.null(main)) {
pdf(file = paste(main, "pdf", sep = "."),
title = main)
}
else {
pdf(file = "Results.pdf")
}
}
if (!only.names) {
if (vars != "all") {
for (i in 1:length(sig.genes)) {
if (nrow(sig.genes[[i]][[1]]) > 0) {
print(paste("running see.genes ", i))
cluster <- see.genes(data = sig.genes[[i]],
cluster.data = cluster.data, k = k,
cluster.method = cluster.method, distance = distance,
agglo.method = agglo.method, show.fit = show.fit,
dis = dis, step.method = step.method,
min.obs = min.obs, alfa = alfa, nvar.correction = nvar.correction,
summary.mode = summary.mode, color.mode = color.mode,
show.lines = show.lines, cexlab = cexlab, newX11 = FALSE,
legend = legend, main = paste(main, names(sig.genes[i]),
sep = " "), ...)
sig.genes[[i]][[1]] <- cbind(sig.genes[[i]][[1]],
cluster$cut)
cluster.algorithm <- cluster$cluster.algorithm.used
groups <- cluster$groups
}
}
}
else {
if (nrow(sig.genes[[1]]) > 0) {
print("running see.genes")
cluster <- see.genes(data = sig.genes,
cluster.data = cluster.data, k = k, cluster.method = cluster.method,
distance = distance, agglo.method = agglo.method,
show.fit = show.fit, dis = dis, step.method = step.method,
min.obs = min.obs, alfa = alfa, nvar.correction = nvar.correction,
summary.mode = summary.mode, color.mode = color.mode,
show.lines = show.lines, cexlab = cexlab, legend = legend, newX11 = FALSE,
main = main, ...)
sig.genes[[1]] <- cbind(sig.genes[[1]],
cluster$cut)
cluster.algorithm <- cluster$cluster.algorithm.used
groups <- cluster$groups
}
}
}
dev.off()
}
else print("maSigPro halted at get.siggenes")
output <- list(summary, sig.genes, fit$dat, fit$G,
edesign, dis, fit$min.obs, fit$p.vector, tstep$variables,
tstep$g, fit$BH.alfa, step.method, Q, alfa, tstep$influ.info,
vars, cluster.algorithm, groups)
names(output) <- c("summary", "sig.genes", "input.data",
"G", "edesign", "dis", "min.obs", "p.vector",
"variables", "g", "BH.alfa", "step.method",
"Q", "step.alfa", "influ.info", "select.vars",
"cluster.algorithm.used", "groups")
}
}
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.