Nothing
#' Differential analysis of lipids between sample groups
#'
#' `de_analysis` and `de_design` perform differential analysis of measured
#' lipids that are associated with a sample group (annotation). `de_analysis`
#' accepts a list of contrasts, while `de_design` allows users to define a
#' design matrix, useful for complex experimental designs or for adjusting
#' possible confounding variables.
#'
#' @param data LipidomicsExperiment object,
#' should be normalized and log2 transformed.
#' @param ... Expressions, or character strings which can be parsed to
#' expressions, specifying contrasts. These are passed to
#' `limma::makeContrasts`.
#' @param measure Which measure to use as intensity, usually Area (default).
#' @param group_col Name of the column containing sample groups. If not
#' provided, defaults to first sample annotation column.
#'
#' @importFrom forcats fct_drop
#' @importFrom rlang quos
#' @importFrom stats model.matrix setNames
#' @return TopTable as returned by limma package
#' @export
#'
#' @examples
#' # type ?normalize_pqn to see how to normalize and log2-transform your data
#' data(data_normalized)
#'
#' # Specifying contrasts
#' de_results <- de_analysis(
#' data_normalized,
#' HighFat_water - NormalDiet_water,
#' measure = "Area"
#' )
de_analysis <- function(data, ..., measure = "Area", group_col = NULL) {
if (is.null(group_col)) {
if (ncol(colData(data)) > 0) {
group_col <- names(colData(data))[[1]]
} else {
stop("Please add clinical data or specify a group column")
}
}
symbols <- as.character(.quos_syms(quos(...)))
group <- colData(data)[[group_col]]
if (!all(symbols %in% as.character(group))) {
stop(
"These constrast variables are not present in ", group_col, " column: ",
paste(symbols[!symbols %in% as.character(group)], collapse=", ")
)
}
data <- data[, group %in% symbols]
group <- fct_drop(colData(data)[[group_col]])
design <- model.matrix(~ 0 + group)
colnames(design) <- gsub("group", "", colnames(design))
return(de_design(data = data, design = design, ..., measure = measure))
}
#' @param design Design matrix generated from [model.matrix()],
#' or a design formula.
#' @param coef Column number or column name specifying which coefficient of
#' the linear model is of interest.
#'
#' @importFrom rlang is_formula
#' @importFrom limma topTable lmFit makeContrasts contrasts.fit eBayes
#' @export
#' @rdname de_analysis
#' @examples
#' # Using formula
#' de_results_formula <- de_design(
#' data = data_normalized,
#' design = ~group,
#' coef = "groupHighFat_water",
#' measure = "Area"
#' )
#'
#' # Using design matrix
#' design <- model.matrix(~group, data = colData(data_normalized))
#' de_results_design <- de_design(
#' data = data_normalized,
#' design = design,
#' coef = "groupHighFat_water",
#' measure = "Area"
#' )
de_design <- function(data, design, ..., coef = NULL, measure = "Area") {
if (is_formula(design)) {
design <- model.matrix(design, data = colData(data))
if (!identical(colnames(data), rownames(design))) {
warning(
'These samples are not present in the design matrix: ',
paste(colnames(data) [!colnames(data) %in% rownames(design)], collapse = ", "),
'. Possibly because the grouping columns have missing values.'
)
data <- data[, rownames(design)]
}
}
if (!is.matrix(design)) {
stop("design should be a matrix or formula")
}
if (!limma::is.fullrank(design)) {
stop("Tested variables are redundant (Design matrix is not full rank).")
}
vfit <- lmFit(assay(data, measure), design)
if (is.null(coef)) {
if (length(quos(...)) == 0) {
warning(
"No contrasts or coefficients are provided. ",
"ANOVA-style analysis will be performed using all group."
)
# Exclude the first column (intercept)
coef <- list("ANOVA" = seq(2, ncol(design)))
} else {
contr.matrix <- limma::makeContrasts(..., levels = colnames(design))
vfit <- limma::contrasts.fit(vfit, contrasts = contr.matrix)
coef <- setNames(seq_len(ncol(contr.matrix)), colnames(contr.matrix))
}
} else {
if (!coef %in% colnames(design)) {
stop(
"One or more coefficients is not in the design matrix.",
" Allowed values are ", colnames(design)
)
}
names(coef) <- coef
}
efit <- eBayes(vfit)
dimname_x <- metadata(data)$dimnames[[1]]
top <- lapply(
coef, function(x)
topTable(efit, number = Inf, coef = x) %>% rownames_to_column(dimname_x)
) %>%
bind_rows(.id = "contrast")
top <- to_df(data, dim = "row") %>%
select(
one_of("Molecule", "Class", "total_cl", "total_cs", "istd", dimname_x)
) %>%
.left_join_silent(top)
attr(top, 'measure') <- measure
return(top)
}
#' @describeIn de_analysis gets a list of significantly changed lipids for
#' each contrast.
#'
#' @param de.results Output of [de_analysis()].
#' @param p.cutoff Significance threshold. Default is `0.05`.
#' @param logFC.cutoff Cutoff limit for log2 fold change. Default is `1`.
#' Ignored in multi-group (ANOVA-style) comparisons.
#'
#' @return `significant_molecules` returns a character vector with names of
#' significantly differentially changed lipids.
#' @export
#'
#' @examples
#' significant_molecules(de_results)
significant_molecules <- function(de.results, p.cutoff = 0.05,
logFC.cutoff = 1) {
if (!"logFC" %in% colnames(de.results)) {
message(
"de.results contains ANOVA-style comparison.",
" LogFC cutoff will be ignored"
)
ret <- de.results %>%
filter(adj.P.Val < p.cutoff) %>%
(function(x) split(x$Molecule, x$contrast))
return(ret)
}
de.results %>%
filter(adj.P.Val < p.cutoff, abs(logFC) > logFC.cutoff) %>%
(function(x) split(x$Molecule, x$contrast))
}
#' @describeIn de_analysis plots a volcano chart for differential analysis
#' results.
#'
#' @param show.labels Whether labels should be displayed for
#' significant lipids. Default is `TRUE`.
#'
#' @return `plot_results_volcano` returns a ggplot object.
#' @export
#' @examples
#' plot_results_volcano(de_results, show.labels = FALSE)
plot_results_volcano <- function(de.results, show.labels = TRUE) {
if (!"logFC" %in% colnames(de.results)) {
message(
"de.results contains ANOVA-style comparison.",
" Average Experssion will be plotted instead of logFC."
)
p <- ggplot(de.results, aes(AveExpr, -log10(adj.P.Val), color = Class, label = Molecule)) +
geom_point()
} else {
p <- ggplot(de.results, aes(logFC, -log10(adj.P.Val), color = Class, label = Molecule)) +
geom_point() +
geom_vline(xintercept = c(1, -1), lty = 2)
}
p <- p +
geom_hline(yintercept = -log10(0.05), lty = 2) +
facet_wrap(~contrast)
if (show.labels) {
sig <- de.results$adj.P.Val < 0.05
if ("logFC" %in% colnames(de.results)) {
sig <- sig & abs(de.results$logFC) > 1
}
p + geom_text(
aes(label = ifelse(sig, Molecule, "")),
vjust = -.5, size = 3, color = "black"
)
}
.display_plot(p)
}
# colnames used in topTable
utils::globalVariables(c("logFC", "AveExpr", "P.Value", "adj.P.Val", "contrast"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.