Nothing
goana <- function(de,...) UseMethod("goana")
goana.MArrayLM <- function(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, trend = FALSE, ...)
# Gene ontology analysis of DE genes from linear model fit
# Gordon Smyth and Yifang Hu
# Created 20 June 2014. Last modified 1 May 2015.
{
# Avoid argument collision with default method
dots <- names(list(...))
if("universe" %in% dots) stop("goana.MArrayLM defines its own universe",call.=FALSE)
if((!is.logical(trend) || trend) && "covariate" %in% dots) stop("goana.MArrayLM defines it own covariate",call.=FALSE)
# Check fit
if(is.null(de$coefficients)) stop("de does not appear to be a valid MArrayLM fit object.")
if(is.null(de$p.value)) stop("p.value not found in fit object, perhaps need to run eBayes first.")
if(length(coef) != 1) stop("Only one coef can be specified.")
ngenes <- nrow(de)
# Check geneid
# Can be either a vector of gene IDs or an annotation column name
geneid <- as.character(geneid)
if(length(geneid) == ngenes) {
universe <- geneid
} else {
if(length(geneid) == 1L) {
universe <- de$genes[[geneid]]
if(is.null(universe)) stop("Column ",geneid," not found in de$genes")
} else
stop("geneid of incorrect length")
}
# Check trend
# Can be logical, or a numeric vector of covariate values, or the name of the column containing the covariate values
if(is.logical(trend)) {
if(trend) {
covariate <- de$Amean
if(is.null(covariate)) stop("Amean not found in fit")
}
} else {
if(is.numeric(trend)) {
if(length(trend) != ngenes) stop("If trend is numeric, then length must equal nrow(de)")
covariate <- trend
trend <- TRUE
} else {
if(is.character(trend)) {
if(length(trend) != 1L) stop("If trend is character, then length must be 1")
covariate <- de$genes[[trend]]
if(is.null(covariate)) stop("Column ",trend," not found in de$genes")
trend <- TRUE
} else
stop("trend is neither logical, numeric nor character")
}
}
# Check FDR
if(!is.numeric(FDR) | length(FDR) != 1) stop("FDR must be numeric and of length 1.")
if(FDR < 0 | FDR > 1) stop("FDR should be between 0 and 1.")
# Get up and down DE genes
fdr.coef <- p.adjust(de$p.value[,coef], method = "BH")
EG.DE.UP <- universe[fdr.coef < FDR & de$coefficients[,coef] > 0]
EG.DE.DN <- universe[fdr.coef < FDR & de$coefficients[,coef] < 0]
DEGenes <- list(Up=EG.DE.UP, Down=EG.DE.DN)
# If no DE genes, return data.frame with 0 rows
if(length(EG.DE.UP)==0 && length(EG.DE.DN)==0) {
message("No DE genes")
return(data.frame())
}
if(trend)
goana(de=DEGenes, universe = universe, covariate=covariate, ...)
else
goana(de=DEGenes, universe = universe, ...)
}
goana.default <- function(de, universe = NULL, species = "Hs", prior.prob = NULL, covariate=NULL, plot=FALSE, ...)
# Gene ontology analysis of DE genes
# Gordon Smyth and Yifang Hu
# Created 20 June 2014. Last modified 19 May 2019.
{
# Get access to package of GO terms
suppressPackageStartupMessages(OK <- requireNamespace("GO.db",quietly=TRUE))
if(!OK) stop("GO.db package required but is not installed (or can't be loaded)")
# Get access to required annotation functions
suppressPackageStartupMessages(OK <- requireNamespace("AnnotationDbi",quietly=TRUE))
if(!OK) stop("AnnotationDbi package required but is not installed (or can't be loaded)")
# Load appropriate organism package
orgPkg <- paste0("org.",species,".eg.db")
suppressPackageStartupMessages(OK <- requireNamespace(orgPkg,quietly=TRUE))
if(!OK) stop(orgPkg," package required but is not installed (or can't be loaded)")
# Get GO to Entrez Gene mappings
obj <- paste0("org.",species,".egGO2ALLEGS")
egGO2ALLEGS <- tryCatch(getFromNamespace(obj,orgPkg), error=function(e) FALSE)
if(is.logical(egGO2ALLEGS)) stop("Can't find gene ontology mappings in package ",orgPkg)
# Convert gene-GOterm mappings to data.frame
# Remove duplicate entries from both mappings and universe
if(is.null(universe)) {
GeneID.PathID <- AnnotationDbi::toTable(egGO2ALLEGS)[,c("gene_id","go_id","Ontology")]
i <- !duplicated(GeneID.PathID[,c("gene_id", "go_id")])
GeneID.PathID <- GeneID.PathID[i, ]
universe <- unique(GeneID.PathID[,1])
prior.prob <- covariate <- NULL
} else {
universe <- as.character(universe)
lu <- length(universe)
if(!is.null(prior.prob) && length(prior.prob)!=lu) stop("universe and prior.prob must have same length")
if(!is.null(covariate) && length(covariate)!=lu) stop("universe and covariate must have same length")
if(anyDuplicated(universe)) {
i <- !duplicated(universe)
if(!is.null(covariate)) covariate <- covariate[i]
if(!is.null(prior.prob)) prior.prob <- prior.prob[i]
universe <- universe[i]
}
# Make universe and set of all annotated genes agree
i <- (universe %in% AnnotationDbi::Lkeys(egGO2ALLEGS))
universe <- universe[i]
if(!is.null(covariate)) covariate <- covariate[i]
if(!is.null(prior.prob)) prior.prob <- prior.prob[i]
AnnotationDbi::Lkeys(egGO2ALLEGS) <- universe
# Convert GO annotation to data.frame
GeneID.PathID <- AnnotationDbi::toTable(egGO2ALLEGS)[,c("gene_id","go_id","Ontology")]
d <- duplicated(GeneID.PathID[,c("gene_id", "go_id")])
GeneID.PathID <- GeneID.PathID[!d, ]
}
# From here, code is mostly the same as kegga.default
# Ensure de is a list
if(is.list(de)) {
if(is.data.frame(de)) stop("de should be a list of character vectors. It should not be a data.frame.")
} else {
de <- list(DE = de)
}
nsets <- length(de)
# Stop if components of de are not vectors
if(!all(vapply(de,is.vector,TRUE))) stop("components of de should be vectors")
# Ensure de gene IDs are unique and of character mode
for (s in 1:nsets) de[[s]] <- unique(as.character(de[[s]]))
# Ensure de components have unique names
names(de) <- trimWhiteSpace(names(de))
NAME <- names(de)
i <- which(NAME == "" | is.na(NAME))
NAME[i] <- paste0("DE",i)
names(de) <- makeUnique(NAME)
# Check universe isn't empty
NGenes <- length(universe)
if(NGenes<1L) stop("No annotated genes found in universe")
# Restrict DE genes to universe
for (s in 1:nsets) de[[s]] <- de[[s]][de[[s]] %in% universe]
# Restrict pathways to universe
i <- GeneID.PathID[,1] %in% universe
if(sum(i)==0L) stop("Pathways do not overlap with universe")
GeneID.PathID <- GeneID.PathID[i,]
# Get prior.prob trend in DE with respect to the covariate, combining all de lists
if(!is.null(covariate)) {
if(!is.null(prior.prob)) message("prior.prob being recomputed from covariate")
covariate <- as.numeric(covariate)
isDE <- (universe %in% unlist(de))
o <- order(covariate)
prior.prob <- covariate
span <- approx(x=c(20,200),y=c(1,0.5),xout=sum(isDE),rule=2,ties=list("ordered",mean))$y
prior.prob[o] <- tricubeMovingAverage(isDE[o],span=span)
if(plot) barcodeplot(covariate, index=isDE, worm=TRUE, span.worm=span, main="DE status vs covariate")
}
# Overlap pathways with DE genes
# Create incidence matrix (X) of gene.pathway by DE sets
if(is.null(prior.prob)) {
X <- matrix(1,nrow(GeneID.PathID),nsets+1)
colnames(X) <- c("N",names(de))
} else {
names(prior.prob) <- universe
X <- matrix(1,nrow(GeneID.PathID),nsets+2)
X[,nsets+2] <- prior.prob[GeneID.PathID[,1]]
colnames(X) <- c("N",names(de),"PP")
}
for (s in 1:nsets) X[,s+1] <- (GeneID.PathID[,1] %in% de[[s]])
# Count #genes and #DE genes and sum prior.prob for each pathway
S <- rowsum(X, group=GeneID.PathID[,2], reorder=FALSE)
# Overlap tests
PValue <- matrix(0,nrow=nrow(S),ncol=nsets)
colnames(PValue) <- paste("P", names(de), sep=".")
nde <- lengths(de, use.names=FALSE)
if(!is.null(prior.prob)) {
# Probability ratio for each pathway vs rest of universe
SumPP <- sum(prior.prob)
M2 <- NGenes-S[,"N"]
Odds <- S[,"PP"] / (SumPP-S[,"PP"]) * M2 / S[,"N"]
# Wallenius' noncentral hypergeometric test
# Note that dWNCHypergeo() is more accurate than pWNCHypergeo(), hence use of 2-terms
if(!requireNamespace("BiasedUrn",quietly=TRUE)) stop("BiasedUrn package required but is not installed (or can't be loaded)")
for(j in seq_len(nsets)) for(i in seq_len(nrow(S)))
PValue[i,j] <- BiasedUrn::pWNCHypergeo(S[i,1L+j], S[i,"N"], M2[i], nde[j], Odds[i], lower.tail=FALSE) +
BiasedUrn::dWNCHypergeo(S[i,1L+j], S[i,"N"], M2[i], nde[j], Odds[i])
# Remove sum of prob column, not needed for output
S <- S[,-ncol(S)]
} else {
# Fisher's exact test
for(j in seq_len(nsets))
PValue[,j] <- phyper(S[,1L+j]-0.5, nde[j], NGenes-nde[j], S[,"N"], lower.tail=FALSE)
}
# Assemble output
GOID <- rownames(S)
TERM <- suppressMessages(AnnotationDbi::select(GO.db::GO.db,keys=GOID,columns="TERM"))
m <- match(GOID,GeneID.PathID[,2])
Ont <- GeneID.PathID[m,3]
Results <- data.frame(Term=TERM[,2], Ont=Ont, S, PValue, stringsAsFactors=FALSE)
Results
}
topGO <- function(results, ontology = c("BP", "CC", "MF"), sort = NULL, number = 20L, truncate.term=NULL)
# Extract top GO terms from goana output
# Gordon Smyth and Yifang Hu
# Created 20 June 2014. Last modified 23 June 2016.
{
# Check results
if(!is.data.frame(results)) stop("results should be a data.frame.")
# Check ontology
ontology <- match.arg(unique(ontology), c("BP", "CC", "MF"), several.ok = TRUE)
# Limit results to specified ontologies
if(length(ontology) < 3L) {
sel <- results$Ont %in% ontology
results <- results[sel,]
}
dimres <- dim(results)
# Check number
if(!is.numeric(number)) stop("number should be a positive integer")
if(number > dimres[1L]) number <- dimres[1]
if(number < 1L) return(results[integer(0),])
# Number of gene lists for which results are reported
# Lists are either called "Up" and "Down" or have user-supplied names
nsets <- (dimres[2L]-3L) %/% 2L
if(nsets < 1L) stop("results has wrong number of columns")
setnames <- colnames(results)[4L:(3L+nsets)]
# Check sort. Defaults to all gene lists.
if(is.null(sort)) {
isort <- 1L:nsets
} else {
sort <- as.character(sort)
isort <- which(tolower(setnames) %in% tolower(sort))
if(!length(isort)) stop("sort column not found in results")
}
# Sort by minimum p-value for specified gene lists
P.col <- 3L+nsets+isort
if(length(P.col)==1L) {
P <- results[,P.col]
} else {
P <- do.call("pmin",as.data.frame(results[,P.col,drop=FALSE]))
}
o <- order(P,results$N,results$Term)
tab <- results[o[1L:number],,drop=FALSE]
# Truncate Term column for readability
if(!is.null(truncate.term)) {
truncate.term <- as.integer(truncate.term[1])
truncate.term <- max(truncate.term,5L)
truncate.term <- min(truncate.term,1000L)
tm2 <- truncate.term-3L
i <- (nchar(tab$Term) > tm2)
tab$Term[i] <- paste0(substring(tab$Term[i],1L,tm2),"...")
}
tab
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.