Nothing
# Tests queryKNN().
# library(kmknn); library(testthat); source("test-queryKNN.R")
library(FNN)
set.seed(1001)
test_that("queryKNN() behaves correctly with queries", {
ndata <- 1000
nquery <- 100
for (ndim in c(1, 5, 10, 20)) {
for (k in c(1, 5, 20)) {
X <- matrix(runif(ndata * ndim), nrow=ndata)
Y <- matrix(runif(nquery * ndim), nrow=nquery)
out <- queryKNN(X, k=k, query=Y)
ref <- get.knnx(data=X, query=Y, k=k)
expect_identical(out$index, ref$nn.index)
expect_equal(out$distance, ref$nn.dist)
}
}
})
set.seed(1002)
test_that("queryKNN() works correctly with subsetting", {
nobs <- 1000
nquery <- 93
ndim <- 21
k <- 7
X <- matrix(runif(nobs * ndim), nrow=nobs)
Y <- matrix(runif(nquery * ndim), nrow=nquery)
ref <- queryKNN(X, Y, k=k)
i <- sample(nquery, 20)
sub <- queryKNN(X, Y, k=k, subset=i)
expect_identical(sub$index, ref$index[i,,drop=FALSE])
expect_identical(sub$distance, ref$distance[i,,drop=FALSE])
i <- rbinom(nquery, 1, 0.5) == 0L
sub <- queryKNN(X, Y, k=k, subset=i)
expect_identical(sub$index, ref$index[i,,drop=FALSE])
expect_identical(sub$distance, ref$distance[i,,drop=FALSE])
rownames(Y) <- paste0("CELL", seq_len(nquery))
i <- sample(rownames(Y), 50)
sub <- queryKNN(X, Y, k=k, subset=i)
m <- match(i, rownames(Y))
expect_identical(sub$index, ref$index[m,,drop=FALSE])
expect_identical(sub$distance, ref$distance[m,,drop=FALSE])
})
set.seed(1003)
test_that("queryKNN() behaves correctly with alternative options", {
nobs <- 1000
nquery <- 100
ndim <- 10
k <- 5
X <- matrix(runif(nobs * ndim), nrow=nobs)
Y <- matrix(runif(nquery * ndim), nrow=nquery)
out <- queryKNN(X, Y, k=k)
# Checking what we extract.
out2 <- queryKNN(X, Y, k=k, get.distance=FALSE)
expect_identical(out2$distance, NULL)
expect_identical(out2$index, out$index)
out3 <- queryKNN(X, Y, k=k, get.index=FALSE)
expect_identical(out3$index, NULL)
expect_identical(out3$distance, out$distance)
# Checking precomputation.
pre <- precluster(X)
out4 <- queryKNN(query=Y, k=k, precomputed=pre) # no need for X!
expect_identical(out4, out)
# Checking transposition.
out5 <- queryKNN(X, k=k, query=t(Y), transposed=TRUE)
expect_identical(out5, out)
})
set.seed(100301)
test_that("queryKNN() behaves correctly with parallelization", {
nobs <- 1000
nquery <- 124
ndim <- 10
k <- 5
X <- matrix(runif(nobs * ndim), nrow=nobs)
Y <- matrix(runif(nquery * ndim), nrow=nquery)
out <- queryKNN(X, Y, k=k)
# Trying out different types of parallelization.
out1 <- queryKNN(X, Y, k=k, BPPARAM=MulticoreParam(2))
expect_identical(out$index, out1$index)
expect_identical(out$distance, out1$distance)
out2 <- queryKNN(X, Y, k=k, BPPARAM=SnowParam(3))
expect_identical(out$index, out2$index)
expect_identical(out$distance, out2$distance)
})
set.seed(10031)
test_that("queryKNN() raw output behaves correctly", {
nobs <- 1001
nquery <- 101
ndim <- 11
k <- 7
X <- matrix(runif(nobs * ndim), nrow=nobs)
Y <- matrix(runif(nquery * ndim), nrow=nquery)
pre <- precluster(X)
out <- queryKNN(query=Y, k=k, precomputed=pre, raw.index=TRUE)
ref <- queryKNN(query=Y, X=t(pre$data), k=k)
expect_identical(out, ref)
# Behaves with subsetting.
i <- sample(nquery, 20)
out <- queryKNN(query=Y, k=k, precomputed=pre, raw.index=TRUE, subset=i)
ref <- queryKNN(query=Y, X=t(pre$data), k=k, subset=i)
expect_identical(out, ref)
i <- rbinom(nquery, 1, 0.5) == 0L
out <- queryKNN(query=Y, k=k, precomputed=pre, raw.index=TRUE, subset=i)
ref <- queryKNN(query=Y, X=t(pre$data), k=k, subset=i)
expect_identical(out, ref)
# Adding row names.
rownames(Y) <- paste0("CELL", seq_len(nquery))
i <- sample(rownames(Y), 30)
out <- queryKNN(query=Y, k=k, precomputed=pre, raw.index=TRUE, subset=i)
ref <- queryKNN(query=Y, X=t(pre$data), k=k, subset=i)
expect_identical(out, ref)
})
set.seed(1004)
test_that("queryKNN() behaves correctly with silly inputs", {
nobs <- 1000
nquery <- 100
ndim <- 10
X <- matrix(runif(nobs * ndim), nrow=nobs)
Y <- matrix(runif(nquery * ndim), nrow=nquery)
# What happens when k is not positive.
expect_error(queryKNN(X, Y, k=0), "positive")
expect_error(queryKNN(X, Y, k=-1), "positive")
# What happens when there are more NNs than k.
restrict <- 10
expect_warning(out <- queryKNN(X[seq_len(restrict),], Y, k=20), "capped")
expect_warning(ref <- queryKNN(X[seq_len(restrict),], Y, k=restrict), NA)
expect_equal(out, ref)
# What happens when there are no dimensions.
out <- queryKNN(X[,0], Y[,0], k=20)
expect_identical(nrow(out$index), as.integer(nquery))
expect_identical(ncol(out$index), 20L)
expect_identical(dim(out$index), dim(out$distance))
expect_true(all(out$distance==0))
# What happens when the query is of a different dimension.
Z <- matrix(runif(nobs * ndim * 2), nrow=nobs)
expect_error(queryKNN(X, k=20, query=Z), "dimensionality")
# What happens when we request raw.index without precomputed.
expect_error(queryKNN(X, Y, k=20, raw.index=TRUE), "not valid")
# What happens when the query is not, strictly a matrix.
AA <- data.frame(Y)
colnames(AA) <- NULL
expect_equal(queryKNN(X, Y, k=20), queryKNN(X, AA, k=20))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.