Nothing
library(kebabs)
## load user defined sequence kernel
source(paste(path.package("kebabs"),
"/examples/UserDefinedSequenceKernel/SpectrumKernlabKernel/SpectrumKernlabKernel.R",
sep=""))
## load data
data(TFBS)
## redefine sequences as BioVector because kernlab does not
## support Biostrings classes
## for kernels supporting the XStringSet classes this
## conversion is not necessary
seqs <- DNAVector(as.character(enhancerFB))
## assign short names to sequences
names(seqs) <- paste("S", 1:length(seqs), sep="_")
## show sequences
seqs
## define kernel object of user defined sequence kernel which
## in this example is the kernlab stringdot spectrum kernel
skk <- spectrumKernlabKernel(k=5)
## show user-defined kernel object
skk
## computation of kernel matrix with user defined sequence kernel
#################################################################
## generate kernel matrix for 100 sequences
km <- getKernelMatrix(skk, seqs[1:100])
km[1:6,1:6]
## training and prediction with user defined sequence kernel
## train only on 100 sequences to shorten time for
## computation of kernel matrix
#################################################################
train <- sample(1:length(seqs), 100)
test <- c(1:length(seqs))[-train]
model <- kbsvm(seqs[train], yFB[train], skk, pkg="kernlab",
svm="C-svc", cost=20, featureWeights="no")
pred <- predict(model, seqs[test])
evaluatePrediction(pred, yFB[test], unique(yFB))
## cross validation
#################################################################
modelc <- kbsvm(seqs[train], yFB[train], skk, pkg="kernlab",
svm="C-svc", cost=20, cross=5, featureWeights="no")
cvResult(modelc)
## grid search
#################################################################
modelg <- kbsvm(seqs[train], yFB[train], skk, pkg="kernlab",
svm="C-svc", cost=c(1,2,3,5,10,20,50,100),
cross=10, noCross=5, featureWeights="no",
explicit="no", showProgress=TRUE)
modelSelResult(modelg)
## model selection
#################################################################
modelm <- kbsvm(seqs[train], yFB[train], skk, pkg="kernlab",
svm="C-svc", cost=c(2,10,20,50,100),
cross=10, nestedCross=5, featureWeights="no",
explicit="no", showProgress=TRUE)
modelSelResult(modelm)
cvResult(modelm)
## no support for explicit representation, feature weights
## and prediction profiles for user-defined kernel
## user-defined kernel can not be used as single
## instance kernel in symmetric pair kernel
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.