Nothing
## ---- fig.align='center', message=FALSE, warning=FALSE, eval=FALSE------------
# library(gsean)
# library(TCGAbiolinks)
# library(SummarizedExperiment)
# # TCGA LUAD
# query <- GDCquery(project = "TCGA-LUAD",
# data.category = "Gene expression",
# data.type = "Gene expression quantification",
# platform = "Illumina HiSeq",
# file.type = "normalized_results",
# experimental.strategy = "RNA-Seq",
# legacy = TRUE)
# GDCdownload(query, method = "api")
# invisible(capture.output(data <- GDCprepare(query)))
# exprs.LUAD <- assay(data)
# # remove duplicated gene names
# exprs.LUAD <- exprs.LUAD[-which(duplicated(rownames(exprs.LUAD))),]
# # list of genes
# recur.mut.gene <- c("KRAS", "TP53", "STK11", "RBM10", "SPATA31C1", "KRTAP4-11",
# "DCAF8L2", "AGAP6", "KEAP1", "SETD2", "ZNF679", "FSCB",
# "BRAF", "ZNF770", "U2AF1", "SMARCA4", "HRNR", "EGFR")
#
# # KEGG_hsa
# load(system.file("data", "KEGG_hsa.rda", package = "gsean"))
#
# # GSEA
# set.seed(1)
# result.GSEA <- gsean(KEGG_hsa, recur.mut.gene, exprs.LUAD, threshold = 0.7)
# invisible(capture.output(p <- GSEA.barplot(result.GSEA, category = 'pathway',
# score = 'NES', pvalue = 'padj',
# sort = 'padj', top = 20)))
# p <- GSEA.barplot(result.GSEA, category = 'pathway', score = 'NES',
# pvalue = 'padj', sort = 'padj', top = 20)
# p + theme(plot.margin = margin(10, 10, 10, 75))
## ---- fig.align='center', message=FALSE, warning=FALSE, eval=TRUE-------------
library(gsean)
library(pasilla)
library(DESeq2)
# pasilla count data
pasCts <- system.file("extdata", "pasilla_gene_counts.tsv",
package = "pasilla", mustWork = TRUE)
cts <- as.matrix(read.csv(pasCts, sep="\t", row.names = "gene_id"))
condition <- factor(c(rep("untreated", 4), rep("treated", 3)))
dds <- DESeqDataSetFromMatrix(
countData = cts,
colData = data.frame(condition),
design = ~ 0 + condition)
# filtering
keep <- rowSums(counts(dds)) >= 10
dds <- dds[keep,]
# differentially expressed genes
dds <- DESeq(dds)
resultsNames(dds)
res <- results(dds, contrast = list("conditiontreated", "conditionuntreated"), listValues = c(1, -1))
statistic <- res$stat
names(statistic) <- rownames(res)
exprs.pasilla <- counts(dds, normalized = TRUE)
# convert gene id
library(org.Dm.eg.db)
gene.id <- AnnotationDbi::select(org.Dm.eg.db, names(statistic), "ENTREZID", "FLYBASE")
names(statistic) <- gene.id[,2]
rownames(exprs.pasilla) <- gene.id[,2]
# GO_dme
load(system.file("data", "GO_dme.rda", package = "gsean"))
# GSEA
set.seed(1)
result.GSEA <- gsean(GO_dme, statistic, exprs.pasilla)
invisible(capture.output(p <- GSEA.barplot(result.GSEA, category = 'pathway',
score = 'NES', top = 50, pvalue = 'padj',
sort = 'padj', numChar = 110) +
theme(plot.margin = margin(10, 10, 10, 50))))
plotly::ggplotly(p)
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.