Nothing
T_scale = "scale"
T_matrix = "matrix"
GPUVar <- local({
GPUVar_env = new.env()
# The precision setting
GPUVar_env$default_index_type = "uint"
GPUVar_env$default_float = "double"
GPUVar_env$default_int = "int"
GPUVar_env$default_size_type = "uint"
#gpu size prefix
GPUVar_env$matrix_size_prefix="gpu_s_"
#Promise series
GPUVar_env$matrix_temporary_space="gpu_matrix_temporary_space"
GPUVar_env$promiseAssgin="//compiler promise assign--"
GPUVar_env$define="//compiler define--"
GPUVar_env$poolDefine="//compiler pool define--"
GPUVar_env$promiseDef="//compiler promise define--"
#Matrix number
GPUVar_env$gp_number="gpu_gp_number"
GPUVar_env$gs_number="gpu_gs_number"
GPUVar_env$lp_number="gpu_lp_number"
GPUVar_env$ls_number="gpu_ls_number"
#This is the offset to find the data in the function argument
#It is a macro
GPUVar_env$global_private_offset="gpu_gp_offset"
GPUVar_env$global_shared_offset="gpu_gs_offset"
GPUVar_env$local_shared_offset="gpu_ls_offset"
#The macro that find the gp,gs,lp,ls size
GPUVar_env$gp_size="gpu_gp_size"
GPUVar_env$gs_size="gpu_gs_size"
GPUVar_env$lp_size="gpu_lp_size"
GPUVar_env$ls_size="gpu_ls_size"
# matrix size info
GPUVar_env$global_private_size = "gpu_gp_size_arg"
GPUVar_env$global_share_size = "gpu_gs_size_arg"
GPUVar_env$local_share_size = "gpu_ls_size_arg"
# worker private data, loacted in global memory
GPUVar_env$global_private_data = "gpu_gp_data"
# Per worker offset
GPUVar_env$global_private_offset = "gpu_gp_offset"
# worker shared data, located in global memory
GPUVar_env$global_shared_data = "gpu_gs_data"
# worker private data, located in private/local memory
GPUVar_env$local_private_data = "gpu_lp_data"
# worker shared data, located in local memory
GPUVar_env$local_shared_data = "gpu_ls_data"
# return value
GPUVar_env$return_variable = "gpu_return_variable"
# Per worker size
GPUVar_env$return_size = "gpu_return_size"
# The vector that is looped on
GPUVar_env$gpu_loop_data = "gpu_loop_data"
# Deducted variable
GPUVar_env$gpu_global_id = "gpu_global_id"
GPUVar_env$gpu_global_size = "gpu_global_size"
# The offset to find the worker data space in the global memory
# It is not an argument
GPUVar_env$worker_offset = "gpu_worker_offset"
GPUVar_env$element_dist="gpu_element_dist"
# parameters for creating the function
GPUVar_env$functionCount = 0
GPUVar_env$functionName = "gpu_kernel"
# This number can be reset to 0 in the beggining of the parser The
# parser can call it when it needs a new variable
GPUVar_env$tempVarInd = 0
GPUVar_env$getTmpVar <- function() {
GPUVar_env$tempVarInd = GPUVar_env$tempVarInd + 1
return(paste0("gpu_temp_var", GPUVar_env$tempVarInd))
}
GPUVar_env$resetTmpCount <- function() {
GPUVar_env$tempVarInd = 0
}
# c(global_private_totalSize,global_private_matrixNum,return_size)
GPUVar_env$size_info = "gpu_sizeInfo"
GPUVar_env$preservedFuncPrefix = "compiler."
GPUVar_env$openclCode = ".opencl_"
GPUVar_env$openclFuncCall = ".opencl("
GPUVar_env$parmsTblName="parms"
# The shared size in byte For doing the matrix multiplication
GPUVar_env$vectorSize = 4
# in byte
GPUVar_env$private_vector_size = 24 * 1024
return(GPUVar_env)
})
.elementFuncs = c("+", "-", "*", "/","^",
">", ">=", "<", "<=", "==","!=",
"abs","abs_int","abs_float","(","[",
"nrow","ncol","length","floor", "ceiling","sweep")
.elementOp = c(.elementFuncs)
#These functions will be dispatched to the regular expression translation
.noParentElementOP = c("t",
"sum","rowSums","colSums","rowMeans","colMeans" ,
"return","seq")
.noChildElementOP = c()
#' @include RProfilerFunc.R
.profileFuncs = list()
.profileFuncs[["nrow"]] = profile_size
.profileFuncs[["ncol"]] = profile_size
.profileFuncs[["length"]] = profile_size
.profileFuncs[["Matrix"]] = profile_Matrix
.profileFuncs[["["]] = profile_subset
.profileFuncs[["("]]=profile_parenthesis
.profileFuncs[["floor"]] = profile_floor
.profileFuncs[["ceiling"]] = profile_ceil
.profileFuncs[["t"]] = profile_transpose
.profileFuncs[["t_nocpy"]] = profile_transpose_nocpy
.profileFuncs[["Scalar"]] = profile_Scalar
.profileFuncs[["matrix"]] = profile_matrix
.profileFuncs[["sum"]]=profile_sum
.profileFuncs[["rowSums"]]=profile_rowSums
.profileFuncs[["colSums"]]=profile_colSums
.profileFuncs[["mean"]]=profile_mean
.profileFuncs[["rowMeans"]]=profile_rowMeans
.profileFuncs[["colMeans"]]=profile_colMeans
.profileFuncs[["sweep"]]=profile_sweep
.profileFuncs[["sort"]]=profile_sort
#element op
.profileFuncs[["+"]] = profile_arithmetic
.profileFuncs[["-"]] = profile_arithmetic
.profileFuncs[["*"]] = profile_arithmetic
.profileFuncs[["/"]] = profile_arithmetic
.profileFuncs[["^"]] = profile_arithmetic
.profileFuncs[[">"]] = profile_logical
.profileFuncs[[">="]] = profile_logical
.profileFuncs[["<"]] = profile_logical
.profileFuncs[["<="]] = profile_logical
.profileFuncs[["=="]] = profile_logical
.profileFuncs[["!="]] = profile_logical
.profileFuncs[["abs"]] = profile_abs
.profileFuncs[["abs_int"]] = profile_abs
.profileFuncs[["abs_float"]] = profile_abs
.profileFuncs[["%*%"]] = profile_matrixMult
.profileFuncs[["subRef"]] = profile_subRef
.profileFuncs[["seq"]] = profile_seq
.profileFuncs[[":"]] = profile_oneStepSeq
.profileCheckFuncs=list()
.profileCheckFuncs[["["]]=profileCheck_subset
.profileCheckFuncs[["nrow"]]=profileCheck_size
.profileCheckFuncs[["ncol"]]=profileCheck_size
# .recompileFuncs[['%*%']]=recompile_matrixMult
#' @include RCParserFunc.R
#' @include RCParser_elementOP.R
.cFuncs = list()
.cFuncs[["<-matrix"]] = C_matrix_right
.cFuncs[["length<-"]] = C_length_left
.cFuncs[["nrow<-"]] = C_nrow_left
.cFuncs[["ncol<-"]] = C_ncol_left
.cFuncs[["<-Matrix"]] = C_NULL
.cFuncs[["<-Scalar"]] = C_NULL
.cFuncs[["<-resize"]] = C_NULL
.cFuncs[["<-subRef"]] = C_NULL
.cFuncs[["<-%*%"]] = C_matMul_right
.cFuncs[["<-seq"]] = C_seq_right
.cFuncs[["<-:"]] = C_oneStepSeq_right
.cFuncs[["<-t"]] = C_transpose_right
.cFuncs[["<-t_nocpy"]] = C_NULL
# No parent opration
.cFuncs[["<-sum"]] = C_sum_mean_right
.cFuncs[["<-rowSums"]] = C_rowSums_right
.cFuncs[["<-colSums"]] = C_colSums_right
.cFuncs[["<-mean"]] = C_sum_mean_right
.cFuncs[["<-rowMeans"]] = C_rowMeans_right
.cFuncs[["<-colMeans"]] = C_colMeans_right
.cFuncs[["<-sort"]] = C_ascending_sort_right
# Element op
.cFuncs[["<-("]]=C_element_parenthesis
.cFuncs[["<-+"]] = C_element_arithmatic
.cFuncs[["<--"]] = C_element_arithmatic
.cFuncs[["<-*"]] = C_element_arithmatic
.cFuncs[["<-/"]] = C_element_arithmatic
.cFuncs[["<->"]] = C_element_arithmatic
.cFuncs[["<->="]] = C_element_arithmatic
.cFuncs[["<-<"]] = C_element_arithmatic
.cFuncs[["<-<="]] = C_element_arithmatic
.cFuncs[["<-=="]] = C_element_arithmatic
.cFuncs[["<-!="]] = C_element_arithmatic
.cFuncs[["<-^"]] = C_element_arithmatic
.cFuncs[["<-floor"]] = C_element_floor
.cFuncs[["<-ceiling"]] = C_element_ceil
.cFuncs[["<-abs_int"]] = C_element_abs
.cFuncs[["<-abs_float"]] = C_element_abs
.cFuncs[["<-["]] = C_element_sub
.cFuncs[["<-length"]] = C_element_length
.cFuncs[["<-nrow"]] = C_element_nrow
.cFuncs[["<-ncol"]] = C_element_ncol
.cFuncs[["<-sweep"]] = C_element_sweep
#Bug fix
.cFuncs[["[<-"]] = C_assignment_symbols
.cFuncs[["return"]] = C_return
.cFuncs[["return_nocpy"]] = C_NULL
.cFuncs[["break"]] = C_break
.cFuncs[["next"]] = C_next
.cFuncs[["message"]] = C_message
.cFuncs[["setVersion"]] = C_setVersion
.cFuncs[["compiler.define"]] = C_compiler_define
#' @include RCParserFunc_Rlevel.R
.sizeFuncs=list()
.sizeFuncs[["["]]=R_subset_size
.sizeFuncs[["sweep"]]=R_sweep_size
general_size_function_list=c("+","-","*","/",">","<",">=","<=","==","!=","^",
"abs","abs_int","abs_float",
"floor", "ceiling","("
)
for(i in general_size_function_list){
.sizeFuncs[[i]]=R_general_size
}
size_one_function_list=c("nrow","ncol","length")
for(i in size_one_function_list){
.sizeFuncs[[i]]=R_size_returnOne
}
if(sum(!.elementFuncs%in%names(.sizeFuncs))!=0){
funcName=.elementFuncs[!.elementFuncs%in%names(.sizeFuncs)]
warning("The following element oprations does not have proper size function:\n",paste0(funcName,collapse = ", "))
}
#' Create a scalar variable
#'
#' The function will create a scalar variable, it is only useful in the openCL functions.
#' It can also be called in R, but its argument will not take any effect.
#'
#' @param precision The variable type, please refer to `gpuMagic.getAvailableType()` to see the available data type.
#' @param constDef
#' Specify if the variable can be redefined. The package will automatically update the variable definition when it is needed,
#' if you do not need this feature, you can manually turn the feature off.
#' It is useful in some special cases such as turning off the auto update to do the integer division
#' (By default, the package will convert the variable to the default float type before doing the division).
#'
#' @examples
#' a=Scalar(precision='double',constDef=FALSE)
#'
#' @return a variable initialize with 0.
#' @export
Scalar <- function(precision = GPUVar$default_float, constDef = FALSE) {
return(0)
}
#' Create a matrix
#'
#' The function create a matrix, it is only useful in the openCL functions.
#' it can also be called in R, but its argument may or may not take any effect.
#'
#' @param nrow,ncol The matrix dimension.
#' @param precision The variable type, please refer to `gpuMagic.getAvailableType()` to see the available data type.
#' @param constDef
#' Specify if the variable can be redefined. The package will automatically update the variable definition when it is needed,
#' if you do not need this feature, you can manually turn the feature off.
#' It is useful in some special cases such as turning off the auto update to do the integer division
#' (By default, the package will convert the variable to the default float type before doing the division).
#' @param shared If the matrix is shared by all the workers in a work group. Do not use it if you don't know its meaning.
#' @param location The physical memory location of the matrix, it can be either 'global' or 'local'. Do not use it if you don't know its meaning.
#' @aliases Matrix
#' @examples
#' #Create a 10-by-10 matrix
#' A=Matrix(10,10)
#' @return a matrix initialize with 0.
#' @export
Matrix <- function(nrow = 1, ncol = 1, precision = GPUVar$default_float,
constDef = FALSE, shared = FALSE, location = "global") {
return(matrix(NA, nrow, ncol))
}
# TODO
resize <- function(data, nrow, ncol) {
return(matrix(data, nrow, ncol))
}
#' Get a reference of the subset of a matrix
#'
#' The function will get a reference of the matrix subset. This is a 0-copy method,
#' which means any change in the reference variable will cause the change in the original matrix.
#' The function is useful when the GPU memory is limited or you do not want to create a copy the data.
#' DO NOT call this function in R, this is for openCL code only(eg. gpuSapply).
#'
#' The package implement this function purely using the code. it will not actually be called on device side.
#' For example, if we have the following code:
#'
#' \preformatted{
#' #Alternative of B=A[ind]
#' B=subRef(A,ind)
#' a=B[2]
#' }
#'
#' In the compilation stage, the code will be changed to
#'
#' \preformatted{
#' a=A[ind[2]]
#' }
#'
#' The variable B does not exist in the code after the compilation and therefore no memory is allocated for it.
#'
#' @section Warning:
#' Since this feature is implemented like a macro,
#' so it is possible to change the value of `ind` after the matrix B is created and before you modify the matrix B.
#' In such case, it may cause an unexpected error.
#' It is a good practice to keep the `ind` same while using the subset reference.
#'
#'
#' @param variable the matrix you want to subset
#' @param i the index of a vector or the row index of a matrix
#' @param j (Optional) The column index of a matrix
#' @examples
#' #create data
#' ind=1:10
#' A=matrix(0,100,100)
#' #Use the one-index subsetting, create a vector of length 10
#' B=subRef(A,ind)
#' #Subsetting the matrix A,create a 10-by-10 matrix
#' C=subRef(A,ind,ind)
#' #row subsetting
#' D=subRef(A,ind,)
#' #column subsetting
#' E=subRef(A,,ind)
#' @return A reference to the subset of a matrix
#' @export
subRef <- function(variable, i = "", j = "") {
if (length(i) == 1 && length(j) == 1 && i == "" && j == "")
return(variable[, , drop = FALSE])
if (length(i) == 1 && i == "")
return(variable[, j, drop = FALSE])
if (length(j) == 1 && j == "")
return(variable[i, , drop = FALSE])
return(variable[i, j, drop = FALSE])
}
#' No copy method
#'
#' Doing some opration without copying memory
#'
#' @details
#' `return_nocpy`: The usage of the `return_nocpy` is same as `return`. This feature is for openCL code only,
#' if it is called in R, the function `return()` will be called instead
#'
#' @param x an object
#' @return `return_nocpy`: No return value
#' @rdname no_copy_method
#' @aliases return_nocpy
#' @usage return_nocpy(x)
#' @examples
#' x=matrix(0)
#' #return_nocpy(x)
#' @export return_nocpy
return_nocpy = return
#' @details
#' `t_nocpy`: The function transposes `x` without allocating the memory. It only works for the openCL code,
#' if it is called in R, the function `t()` will be called instead
#'
#' @return `t_nocpy`: the transpose of `x`
#' @rdname no_copy_method
#' @aliases t_nocpy
#' @usage t_nocpy(x)
#' @examples
#' #x=t_nocpy(x)
#' @export t_nocpy
t_nocpy=function(x){
t(x)
}
#Insert variable information into the varInfo
compiler.addInfo<-function(varName,...){
}
compiler.addScalarInfo<-function(varName,precisionType,...){
}
#Change the variable property(Must defined)
compiler.setProperty<-function(varName,...){
}
#define the variable(s)
#The compiler will define the variable in the following way
#1.Find if there is any variable that can be used in the memory pool, use it
#2.If the memory pool does not have any available variable,
#define the variable without adding it in the pool
compiler.define<-function(precision,varName,def){
if(is.null(def))def="NULL"
}
#The compiler will define the variable in the following way
#1.Find if there is any variable that can be used in the memory pool, use it
#2.If the memory pool does not have any available variable, define a new variable in the pool to use it.
compiler.poolDefine<-function(precision,varName,def){
if(is.null(def))def="NULL"
}
#If the variable is in used, then define it.
compiler.promiseDefine<-function(precision,varName,def){
if(is.null(def))def="NULL"
#paste0(precision," ",varName;")
}
#If the variable is in used, then do the assignment
compiler.promiseAssign<-function(target,code){
paste0(GPUVar$promiseAssgin,target,"--",code)
}
compiler.release<-function(varName){
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.