Nothing
## ----library, eval=FALSE------------------------------------------------------
# library(gpart)
## ----library0, include=FALSE--------------------------------------------------
library(gpart)
## ----data_read, echo=TRUE-----------------------------------------------------
data(geno)
data(SNPinfo)
data(geneinfo)
## ----datatype_geno, echo=TRUE-------------------------------------------------
geno[1:5, 1:5]
## ----datatype_SNPinfo, echo=TRUE----------------------------------------------
head(SNPinfo)
## ----datatype_geneinfo, echo=TRUE---------------------------------------------
head(geneinfo)
## ----quickstart_bigld, echo=FALSE---------------------------------------------
# By default, BigLD uses LD measure r2.
BigLDres = BigLD(geno = geno, SNPinfo = SNPinfo)
## ----quickstart_gpart, echo=FALSE---------------------------------------------
# load the gene information from the DB (via biomaRt)
GPARTres = GPART(geno = geno, SNPinfo = SNPinfo,
assembly = "GRCh37", minsize = 4, maxsize = 50)
# use inputted gene information
GPARTres = GPART(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo,
minsize = 4, maxsize = 50)
## ----quickstart_ldblockheatmap, echo=FALSE------------------------------------
# load the gene information from the DB (via biomaRt)
LDblockHeatmap(geno = geno, SNPinfo = SNPinfo, assembly = "GRCh37",
filename = "heatmap_example2", res = 150)
# use inputted gene information
LDblockHeatmap(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo,
filename = "heatmap_example1", res = 150)
## ----CLQDeg1------------------------------------------------------------------
clq1 = CLQD(geno[, 1:100], SNPinfo[1:100,])
## ----CLQDeg1_2----------------------------------------------------------------
# CLQ results for 300 SNPs
head(clq1, n = 20)
table(clq1)
# n of singletons
sum(is.na(clq1))
## ----CLQDeg2, eval=FALSE------------------------------------------------------
# CLQD(geno[, 1:100], SNPinfo[1:100,], LD = "Dprime")
## ----CLQDeg3, eval=FALSE------------------------------------------------------
# CLQD(geno[, 1:100], SNPinfo[1:100,], CLQcut = 0.7, hrstType = "fast",
# CLQmode = "maximal")
#
## ----BigLDeg1-----------------------------------------------------------------
# Use the options `geno` and `SNPinfo` to input additive genotype data and SNP information data respectively.
# use r2 measure (default)
res1 = BigLD(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,])
## ----BigLDeg1-1, eval=FALSE---------------------------------------------------
# #use D' measure
# res1_dp = BigLD(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,]
# ,LD = "Dprime")
## ----BigLDeg1show-------------------------------------------------------------
head(res1)
## ----BigLDeg2, eval=FALSE-----------------------------------------------------
# # When you have to input files directly, use the parameter `genofile` (and `SNPinfofile`) instead of `geno` and `SNPinfo`.
# res2 = BigLD(genofile = "geno.vcf")
# res3 = BigLD(genofile = "geno.ped", SNPinfofile = "geno.map")
# # change LD measure, hrstParam
# res4 = BigLD(geno = geno, SNPinfo = SNPinfo, LD = "Dprime", hrstParam = 150)
## ----BigLDeg3, eval=FALSE-----------------------------------------------------
# res5 = BigLD(geno = geno, SNPinfo = SNPinfo, MAFcut = 0.1, appendRare = TRUE)
## ----BigLDeg4, eval=FALSE-----------------------------------------------------
# cutlist = rbind(c(21, "rs440600", 16051956), c(21, "rs9979041", 16055738))
# res6 = BigLD(geno = geno[, 1:100], SNPinfo = SNPinfo[1:100,], cutByForce = cutlist)
## ----BigLDeg4-1, include=FALSE------------------------------------------------
cutlist = rbind(c(21, "rs440600", 16051956), c(21, "rs9979041", 16055738))
res6 = BigLD(geno = geno[, 1:100], SNPinfo = SNPinfo[1:100,], cutByForce = cutlist)
## ----BigLDeg4show-------------------------------------------------------------
print(cutlist)
head(res6)
## ----BigLDeg7, eval=FALSE-----------------------------------------------------
# res7 = BigLD(geno = geno, SNPinfo = SNPinfo, startbp = 16058400, endbp = 16076500)
## ----BigLDeg7-1, include=FALSE------------------------------------------------
res7 = BigLD(geno = geno, SNPinfo = SNPinfo, startbp = 16058400, endbp = 16076500)
## ----BigLDeg7show-------------------------------------------------------------
res7
## ----data_read_gene, echo=TRUE------------------------------------------------
data(geneinfo)
head(geneinfo)
## ----GPARTeg0-----------------------------------------------------------------
# gene based GPART using the pre-calculated BigLD result 'res1'
# The input data of GPART must be the same as the input data used to obtain 'res1'
# note that the `res1` is obtained by using the first 1000 SNPs in geno.
# default minsize = 4, maxsize = 50
Gres0 = GPART(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
geneinfo = geneinfo,BigLDresult = res1,
minsize = 4, maxsize = 50)
## ----GPARTeg0res--------------------------------------------------------------
# results of gene-based GPART
head(Gres0)
## ----GPARTeg, eval=FALSE------------------------------------------------------
# # gene based model
# Gres1 = GPART(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo)
# # gene based model using LD measure Dprime
# Gres2 = GPART(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo, LD = "Dprime")
## ----GPARTeg2, eval=FALSE-----------------------------------------------------
# # LD block based - use only LD block information
# Gres3 = GPART(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo,
# GPARTmode = "LDblockBased", Blockbasedmode = "onlyBlocks")
# # LD block based - use gene information to merge singletons
# Gres4 = GPART(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo,
# GPARTmode = "LDblockBased", Blockbasedmode = "useGeneRegions")
## ----GPARTeg3, eval = FALSE---------------------------------------------------
# # you can load text file containing gene information.
# Gres5 = GPART(geno = geno, SNPinfo = SNPinfo, geneinfofile = "geneinfo.txt")
## ----GPARTeg4, eval=FALSE-----------------------------------------------------
# # use `geneDB` option instead of `geneinfo` or `geneinfofile`
# # default geneDB is "ensembl" and default assembly is "GRCh38"
# Gres6 = GPART(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# BigLDresult = res1, geneDB = "ensembl", assembly = "GRCh37")
# Gres7 = GPART(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# BigLDresult = res1, geneDB = "ucsc", assembly = "GRCh37" )
## ----LDheat1-0, eval=FALSE----------------------------------------------------
# # First LDblockHeatmap calculate the LD block results using BigLD(), and then draw the LD heatmap, block boundaries and physical locations, and gene information
# LDblockHeatmap(geno = geno, SNPinfo = SNPinfo,geneinfo = geneinfo,
# filename = "heatmap_all", res = 150)
## ---- out.width = "1200px", echo = FALSE--------------------------------------
knitr::include_graphics("heatmap_all.png")
## ----LDheat1-1, eval=FALSE----------------------------------------------------
# # You can use the already obtained BigLD result using an option 'blockresult'.
# # note that the `res1` is obtained by using the first 1000 SNPs in geno.
# LDblockHeatmap(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# geneinfo = geneinfo, blockresult = res1,
# filename = "heatmap1", res = 200)
# # For the obtained result 'res1', you can plot the only part of the result.
# LDblockHeatmap(geno = geno[,300:800], SNPinfo = SNPinfo[300:800,],
# geneinfo = geneinfo, blockresult = res1,
# filename = "heatmap1_part", res = 200)
# # If there is no inputted Big-LD result,
# # the function will calculate the BigLD result first and then draw the figure using the result.
# LDblockHeatmap(geno = geno, SNPinfo = SNPinfo,
# geneinfo = geneinfo, filename = "heatmap2")
# # you can save the output in tiff file
# LDblockHeatmap(geno = geno, SNPinfo = SNPinfo,
# geneinfo = geneinfo, filename = "heatmap3", type = "tif")
## ----LDheat2, eval=FALSE------------------------------------------------------
# # the function first execute BigLD to obtain LDblock results, and then run GPART algorithm.
# LDblockHeatmap(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# geneinfo = geneinfo, LD = "Dprime",
# filename = "heatmap_Dp", res = 200)
# # or you can use the Big-LD results already obtained.
# LDblockHeatmap(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# geneinfo = geneinfo, LD = "Dp-str"
# , filename = "heatmap_Dp-str", res = 200)
## ---- out.width = "1000px", echo = FALSE--------------------------------------
knitr::include_graphics("heatmap_Dp-str.png")
## ----LDheat3, eval=FALSE------------------------------------------------------
# # the function first execute BigLD to obtain LDblock results, and then run GPART algorithm.
# LDblockHeatmap(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo,
# chrN = 21, startbp = 16000000, endbp = 16200000,
# filename = "heatmap_16mb-16.2mb")
## ----LDheat4, eval=FALSE------------------------------------------------------
# # using the obatined GPART results, draw figure.
# LDblockHeatmap(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# geneinfo = geneinfo, blockresult = Gres0,
# blocktype = "gpart", filename = "heatmap_gpart")
# # or if you set the blocktype only, the function will execute the proper block construction algorithm.
# LDblockHeatmap(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# geneinfo = geneinfo, blocktype = "gpart",
# filename = "heatmap_gpart2")
## ----LDheat5, eval=FALSE------------------------------------------------------
# # Show gene region information obtained from "ensembl" DB in assembly GRCh38.
# LDblockHeatmap(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# geneDB = "ensembl", assembly = "GRCh37",
# filename = "heatmap_enb")
## ----LDheat5-1, eval=FALSE----------------------------------------------------
# # Do not show the gene region information.
# LDblockHeatmap(geno = geno[,1:1000], SNPinfo = SNPinfo[1:1000,],
# geneshow = FALSE, filename = "heatmap_wogene")
## ----LDheat6, results='hide'--------------------------------------------------
# using CLQshow = TRUE options to show LD bin results.
LDblockHeatmap(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo,
CLQshow = TRUE, startbp = 16300000, endbp = 16350000,
res=200, filename = "heatmap_clq")
## ---- out.width = "1000px", echo = FALSE--------------------------------------
knitr::include_graphics("heatmap_clq.png")
## ----LDheat7, eval=FALSE------------------------------------------------------
# # using "onlyHeatmap = TRUE"
# LDblockHeatmap(geno = geno, SNPinfo = SNPinfo, geneinfo = geneinfo,
# onlyHeatmap = TRUE, filename = "heatmap_no_bound", res = 150)
## ----convert2GRange-----------------------------------------------------------
BigLD_grange = convert2GRange(res1)
BigLD_grange
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.