Description Usage Arguments Details Value Author(s) Examples
View source: R/plotGrandLinear.R
A Manhattan plot is special scatter plot used to visualize data with a large number of data points, with a distribute of some higher-magnitude values. For example, in the GWAS(genome-wide association studies). Here we mainly focus on GWAS Manhattan plots. X-axis is genomic coordinates and Y-axis is negative logarithm of the associated P-value for each single nucleotide polymorphism. So higher the value, more stronger the association they are.
1 2 3 4 5 6 7 8 | plotGrandLinear(obj, ..., facets, space.skip = 0.01, geom = NULL,
cutoff = NULL, cutoff.color = "red", cutoff.size = 1,
legend = FALSE, xlim, ylim, xlab, ylab, main,
highlight.gr = NULL, highlight.name = NULL,
highlight.col = "red", highlight.label = TRUE,
highlight.label.size = 5, highlight.label.offset =
0.05, highlight.label.col = "black", spaceline =
FALSE)
|
obj |
|
... |
extra arguments passed. such as color, size, alpha. |
facets |
facets formula, such as group ~ . |
space.skip |
numeric value for skip ratio, between chromosome spaces.default is 0.01. |
geom |
geometric object, defualt is "point". |
cutoff |
A numeric vector which used as cutoff for Manhattan plot. |
cutoff.color |
A character specifying the color used for cutoff. Default is "red". |
cutoff.size |
A numeric value which used as cutoff line size. |
legend |
A logical value indicate whether to show legend or not. Default is FALSE which disabled the legend. |
xlim |
limits for x scale. |
ylim |
limits for y scale. |
xlab |
Label for xscale. |
ylab |
Label for yscale. |
main |
title. |
highlight.gr |
a |
highlight.name |
if |
highlight.col |
highlight colors. |
highlight.label |
logical value, label the highlighted region of not. |
highlight.label.size |
highlight label size. |
highlight.label.offset |
highlight label offset. |
highlight.label.col |
highlight label color. |
spaceline |
show line between chromosomes. |
Please use seqlengths of the object and space.skip arguments to control the layout of the coordiant genome transformation.
aes(y = ...) is requried.
aes(color = ) is used to mapping to data variables, if just pass "color" without aes(), then will recycle the color to represent each chromosomes.please see the example below.
Return a ggplot object.
Tengfei Yin
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | ## load
library(ggbio)
data(hg19IdeogramCyto, package = "biovizBase")
data(hg19Ideogram, package = "biovizBase")
library(GenomicRanges)
## simul_gr
library(biovizBase)
gr <- GRanges(rep(c("chr1", "chr2"), each = 5),
IRanges(start = rep(seq(1, 100, length = 5), times = 2),
width = 50))
autoplot(gr)
## coord:genome
autoplot(gr, coord = "genome")
gr.t <- transformToGenome(gr)
head(gr.t)
## is
is_coord_genome(gr.t)
metadata(gr.t)$coord
## simul_snp
chrs <- as.character(levels(seqnames(hg19IdeogramCyto)))
seqlths <- seqlengths(hg19Ideogram)[chrs]
set.seed(1)
nchr <- length(chrs)
nsnps <- 100
gr.snp <- GRanges(rep(chrs,each=nsnps),
IRanges(start =
do.call(c, lapply(chrs, function(chr){
N <- seqlths[chr]
runif(nsnps,1,N)
})), width = 1),
SNP=sapply(1:(nchr*nsnps), function(x) paste("rs",x,sep='')),
pvalue = -log10(runif(nchr*nsnps)),
group = sample(c("Normal", "Tumor"), size = nchr*nsnps,
replace = TRUE)
)
## shorter
seqlengths(gr.snp)
nms <- seqnames(seqinfo(gr.snp))
nms.new <- gsub("chr", "", nms)
names(nms.new) <- nms
gr.snp <- renameSeqlevels(gr.snp, nms.new)
seqlengths(gr.snp)
## unorder
autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)
## sort
gr.snp <- keepSeqlevels(gr.snp, c(1:22, "X", "Y"))
autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)
## with_seql
names(seqlths) <- gsub("chr", "", names(seqlths))
seqlengths(gr.snp) <- seqlths[names(seqlengths(gr.snp))]
autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)
## line
autoplot(gr.snp, coord = "genome", geom = "line", aes(y = pvalue, group = seqnames,
color = seqnames))
## plotGrandLinear
plotGrandLinear(gr.snp, aes(y = pvalue))
## morecolor
plotGrandLinear(gr.snp, aes(y = pvalue, color = seqnames))
plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue"))
plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue", "red"))
plotGrandLinear(gr.snp, aes(y = pvalue), color = "red")
## cutoff
plotGrandLinear(gr.snp, aes(y = pvalue), cutoff = 3, cutoff.color = "blue", cutoff.size = 4)
## cutoff-low
plotGrandLinear(gr.snp, aes(y = pvalue)) + geom_hline(yintercept = 3, color = "blue", size = 4)
## longer
## let's make a long name
nms <- seqnames(seqinfo(gr.snp))
nms.new <- paste("chr00000", nms, sep = "")
names(nms.new) <- nms
gr.snp <- renameSeqlevels(gr.snp, nms.new)
seqlengths(gr.snp)
## rotate
plotGrandLinear(gr.snp, aes(y = pvalue)) + theme(axis.text.x=element_text(angle=-90, hjust=0))
## sessionInfo
sessionInfo()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.