Description Usage Arguments Details Value Note Author(s) References See Also Examples
simGG simulates parameters and data from the prior-predictive of GaGa/ MiGaGa models with several groups, fixing the hyper-parameters.
simLNN simulates from a log-normal normal with gene-specific variances (LNNMV in package EBarrays). simNN returns the log observations.
1 2 3 4 5 6 |
n |
Number of genes. |
m |
Vector indicating number of observations to be simulated for each group. |
p.de |
Probability that a gene is differentially expressed. |
a0, nu |
Mean expression for each gene is generated from
|
balpha, nualpha |
Shape parameter for each gene is generated
from |
equalcv |
If |
probclus |
Vector with the probability of each component in the mixture. Set to 1 for the GaGa model. |
a, l |
Optionally, if |
useal |
For |
mu0,tau0 |
Gene-specific means arise from N(mu0,tau0^2) |
v0, sigma0 |
Gene-specific variances arise from IG(.5*nu0,.5*nu0*sigma0^2) |
For the GaGa model, the shape parameters are actually drawn from a gamma approximation to
their posterior distribution. The function rcgamma
implements
this approximation.
Object of class 'ExpressionSet'. Expression values can be accessed via
exprs(object)
and the parameter values used to generate the
expression values can be accessed via fData(object)
.
Currently, the routine only implements prior predictive simulation for the 2 hypothesis case.
David Rossell
Rossell D. (2009) GaGa: a Parsimonious and Flexible Model for Differential Expression Analysis. Annals of Applied Statistics, 3, 1035-1051.
Yuan, M. and Kendziorski, C. (2006). A unified approach for simultaneous gene clustering and differential expression identification. Biometrics 62(4): 1089-1098.
simnewsamples
to simulate from the posterior
predictive, checkfit
for graphical posterior predictive checks.
1 2 3 4 5 6 7 8 9 10 11 | #Not run. Example from the help manual
#library(gaga)
#set.seed(10)
#n <- 100; m <- c(6,6)
#a0 <- 25.5; nu <- 0.109
#balpha <- 1.183; nualpha <- 1683
#probpat <- c(.95,.05)
#xsim <- simGG(n,m,p.de=probpat[2],a0,nu,balpha,nualpha)
#
#plot(density(xsim$x),main='')
#plot(xsim$l,xsim$a,ylab='Shape',xlab='Mean')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.