Nothing
##' @title View a stacked representation of the most variable targets or individual guides within an experiment,
##' as a percentage of the total aligned reads
##' @description This function identifies the gRNAs or targets that change the most from sample to sample within an experiment as a percentage of
##' the entire library. It then plots the abundance of the top \code{nguides} as a stacked barplot for all samples in the experiment. The purpose of this
##' algorithm is to detect potential distortions in the library composition that might not be properly controlled by sample normalization, and so
##' the most variable entites are defined by calculating the percent of aligned reads that they contribute to each sample, and then ranking each entity
##' by the range of these percentages across all samples. Consequently, gRNAs or Targets that are highly abundant in at least one condition will be
##' are more likely to be identified.
##' @param eset An ExpressionSet object containing, at minimum, a matrix of gRNA abundances extractable with the exprs() function, and a metadata
##' object containing a column named \code{SAMPLE_LABEL} containing unique identifers for each sample. The \code{colnames} should be syntactically
##' @param sampleKey An optional sample key, supplied as an ordered factor linking the samples to experimental
##' variables. The \code{names} attribute should exactly match those present in \code{eset}, and the control set is assumed to be
##' the first \code{level}.
##' @param nguides The number of guides (or targets) to display.
##' @param plotType A string indicating whether the individual guides should be displayed ("\code{gRNA}"), or if they should be aggregated into target-level
##' estimates ("\code{Target}") according to the \code{geneSymbol} column in the \code{annotation} object.
##' @param annotation An optional data.frame containing an annotation object to be used to aggregate the guides into targets. gRNAs are annotated by row,
##' and must minimally contain a column \code{geneSymbol} indicating the target elements.
##' @param ylimit An optional numeric vector of length 2 specifying the y limits for the plot, useful in comparin across studies.
##' @param subset An optional character vector containing the sample labels to be used in the analysis; all elements must be contained in the \code{colnames} of the specified \code{eset}.
##' @return A stacked barplot displaying the appropriate entities on the default device.
##' @author Russell Bainer
##' @import ggplot2
##' @examples
##' data('es')
##' data('ann')
##' ct.stackGuides(es, nguides = 20, plotType = "Target", annotation = ann, ylimit = NULL, subset = NULL)
##' @export
ct.stackGuides <- function(eset, sampleKey = NULL, nguides = 20, plotType = "gRNA", annotation = NULL, ylimit = NULL, subset = NULL){
current.graphic.params <- par(no.readonly = TRUE)
on.exit(suppressWarnings(par(current.graphic.params)))
if (!requireNamespace("ggplot2")) {
stop("The ggplot2 package is required")
}
if(!is.numeric(nguides)){stop('Please specify a numeric number of guides to display.')}
if(!methods::is(eset, "ExpressionSet")){stop('eset must be an expressionset object.')}
if(!(plotType %in% c("gRNA", "Target"))){stop('Please specify "gRNA" or "Target" to be displayed.')}
#Check eset colnames
d <- exprs(eset)
if(is.null(sampleKey)){
sampleKey <- ordered(rep('', ncol(d)))
names(sampleKey) <- colnames(d)
}
if(any(make.names(colnames(d)) != colnames(d))){
warning("Some of the sample names are not syntactically valid. Coercing.")
sampleKey <- sampleKey[colnames(d)]
names(sampleKey) <- make.names(colnames(d))
colnames(d) <- make.names(colnames(d))
}
#If a fit is included, check to see if it's valid and then subset the expression and pheno data appropriately.
if(!is.null(subset)){
if(!is.character(subset)){
stop("subset should be a character vector containing the labels of the samples that you wish to analyze.")
}
subset <- make.names(subset)
if(length(setdiff(subset, colnames(d))) != 0){
stop("Not all of the samples in subset are present in the specified eset.")
}
d <- d[,subset]
sampleKey <- sampleKey[subset]
}
#idiosyncracies of ggplot forces rearrangement of factor labels for proper plotting.
sampleKey <- sampleKey[order(sampleKey)]
invisible(ct.inputCheck(sampleKey, d))
#Everything ok, moving on.
plottitle <- paste0("Top ", nguides, " Most Variable ", plotType, "s Across Experimental Condition")
if(plotType == "Target"){
if(is.null(annotation)){
stop('An annotation object containing a "geneSymbol" column must be supplied to
display target-level representation.')
}
annotation <- ct.prepareAnnotation(annotation, throw.error = FALSE)
if(sum(is.na(annotation$geneSymbol)) > 0){
message('Converting missing values in the annotation file to "NoTarget".')
annotation$geneSymbol[is.na(annotation$geneSymbol)] <- "NoTarget"
}
#Convert all gRNA abundance to % representation
message('Summarizing gRNA counts into targets.')
d <- t(vapply(levels(annotation$geneSymbol),
function(x){if(sum(annotation$geneSymbol %in% x) > 1){
colSums(d[row.names(annotation)[annotation$geneSymbol %in% x],])
} else {
d[row.names(annotation)[annotation$geneSymbol %in% x],]
}
},
numeric(ncol(d))
)
)
}
d <- apply(d, 2, function(x){x/sum(x, na.rm = TRUE)})
d <- d[order(apply(d, 1, function(x){range(x, na.rm = TRUE)[2] - range(x, na.rm = TRUE)[1]}),
decreasing = TRUE),
names(sampleKey)[order(sampleKey)]]
d <- d[seq_len(nguides),]
plotframe <- data.frame("gRNA" = rep(row.names(d), ncol(d)),
"Condition" = rep(paste0(colnames(d), '_', sampleKey[colnames(d)]), each = nrow(d)),
"ReadProportion" = as.numeric(d))
colorScale <- colorRampPalette(c("white", "red", "blue", "black"))(nguides)
#as requested by Sarah, highlight the NTCs if they are present.
if(is.element("NoTarget", levels(plotframe$gRNA))){
colorScale[is.element(levels(plotframe$gRNA), "NoTarget")] <- "forestgreen"
}
#also scale the legend as appropriate for the number of guides:
legend.scale.factor <- 15/nguides
if(!is.null(ylimit)){
if(!is.numeric(ylimit) | (length(ylimit) != 2)){
stop("The ylimit variable must be NULL, or a numeric vector of length 2.")
}
ggplot(plotframe, aes_string(x = 'Condition', y = 'ReadProportion', fill = 'gRNA')) +
geom_bar(stat = "identity", position = 'stack') +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
scale_fill_manual(values=colorScale) + ggtitle(plottitle) +
coord_cartesian(ylim = c(ylimit[1], ylimit[2])) +
ylab("Proportion of Total Reads") +
theme(legend.key.size = unit(legend.scale.factor, "cm"), legend.title=element_blank())
} else{
ggplot(plotframe, aes_string(x = 'Condition', y = 'ReadProportion', fill = 'gRNA')) +
geom_bar(stat = "identity", position = 'stack') +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
scale_fill_manual(values=colorScale) +
ggtitle(plottitle) +
ylab("Proportion of Total Reads") +
theme(legend.key.size = unit(legend.scale.factor, "cm"), legend.title=element_blank())
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.