Nothing
frma <- function(object, background="rma", normalize="quantile", summarize="robust_weighted_average", target="probeset",
input.vecs=NULL, output.param=NULL, verbose=FALSE){
## check input
if(!class(object) %in% c("AffyBatch", "ExonFeatureSet", "GeneFeatureSet")) stop("object must be of class AffyBatch, ExonFeatureSet, or GeneFeatureSet.")
if(class(object)=="ExonFeatureSet") target <- match.arg(target, c("core", "full", "extended", "probeset"))
if(class(object)=="GeneFeatureSet") target <- match.arg(target, c("core", "probeset"))
if(verbose & class(object)=="ExonFeatureSet") message(paste("Exon summarization at ", target, " level.\n", sep=""))
if(verbose & class(object)=="GeneFeatureSet") message(paste("Gene summarization at ", target, " level.\n", sep=""))
if(!background %in% c("none", "rma")) stop("background must be either none or rma")
if(!normalize %in% c("none", "quantile")) stop("normalize must be either none or quantile")
if(!summarize %in% c("median_polish", "average", "median", "weighted_average", "robust_weighted_average", "random_effect")){
stop("summarize must be one of: median_polish, average, median, weighted_average, robust_weighted_average, random_effect")
}
if(summarize=="random_effect" & class(object)=="ExonFeatureSet") stop("Summarization method random_effect is not implemented for ExonFeatureSet objects.")
if(summarize=="random_effect" & class(object)=="GeneFeatureSet") stop("Summarization method random_effect is not implemented for GeneFeatureSet objects.")
## determine data platform
if(class(object)=="AffyBatch"){
cdfname <- cleancdfname(cdfName(object))
tmp <- gsub("cdf","",cdfname)
platform <- gsub("..entrezg", "", tmp)
vecdataname <- paste(tmp, "frmavecs", sep="")
}
if(class(object)%in%c("ExonFeatureSet","GeneFeatureSet")){
cdfname <- annotation(object)
platform <- gsub("pd.", "", cdfname, fixed=TRUE)
vecdataname <- paste(platform, "frmavecs", sep="")
}
## load frmavecs unless supplied as input
if(is.null(input.vecs)){
pkg <- paste(platform, "frmavecs", sep="")
require(pkg, character.only=TRUE, quietly=TRUE) || stop(paste(pkg, "package must be installed first"))
data(list=eval(vecdataname))
input.vecs <- get(vecdataname)
} else {
if(summarize=="random_effect" & (any(input.vecs$probeVarBetween==0) | any(input.vecs$probeVarWithin==0))){
stop("If summarize method is random_effect then probeVarBetween and probeVarWithin must be greater than zero for all probes.")
}
}
## call the appropriate frma worker function based on the object class
if(class(object)=="AffyBatch"){
cdfname <- cleancdfname(cdfName(object))
platform <- gsub("cdf","",cdfname)
output <- frmaAffyBatch(object, background, normalize, summarize, input.vecs, output.param, verbose)
}
if(class(object)%in%c("ExonFeatureSet","GeneFeatureSet")){
cdfname <- annotation(object)
platform <- gsub("pd.","",cdfname,fixed=TRUE)
output <- frmaFeatureSet(object, background, normalize, summarize, target, input.vecs, output.param, verbose)
}
## create a new ExpressionSet or frmaExpressionSet to hold the output
if(is.null(output.param)){
if(is.null(output$stderr)){
e <- new("ExpressionSet", assayData=assayDataNew(exprs=output$exprs), annotation=platform, phenoData=phenoData(object), experimentData=experimentData(object))
} else{
e <- new("ExpressionSet", assayData=assayDataNew(exprs=output$exprs, se.exprs=output$stderr), annotation=platform, phenoData=phenoData(object), experimentData=experimentData(object))
}
} else {
if(is.null(output$stderr)){
e <- new("frmaExpressionSet", assayData=assayDataNew(exprs=output$exprs), annotation=platform, phenoData=phenoData(object), experimentData=experimentData(object))
} else{
e <- new("frmaExpressionSet", assayData=assayDataNew(exprs=output$exprs, se.exprs=output$stderr), annotation=platform, phenoData=phenoData(object), experimentData=experimentData(object))
}
if("weights" %in% output.param) w <- output$weights else w <- matrix(nrow=0, ncol=0)
if("residuals" %in% output.param) r <- output$residuals else r <- matrix(nrow=0, ncol=0)
if("random_effects" %in% output.param) g <- output$gammas else g <- matrix(nrow=0, ncol=0)
weights(e) <- w
residuals(e) <- r
randomeffects(e) <- g
}
return(e)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.