Description Usage Arguments Details Value Author(s) References See Also Examples
Many of the peaks are not similar. So, the set of pairwise similarity matrices can be compressed.
1 2 |
object |
a |
verbose |
logical, whether to print out information |
... |
further arguments |
Using sparse matrix representations, a significant compression can be achieved. Here, we use the matrix.csc
class of the SpareM
package.
an object of the same type as the input object
Mark Robinson
Mark D Robinson (2008). Methods for the analysis of gas chromatography - mass spectrometry data PhD dissertation University of Melbourne.
peaksAlignment
, clusterAlignment
, progressiveAlignment
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | require(gcspikelite)
# paths and files
gcmsPath<-paste(find.package("gcspikelite"),"data",sep="/")
cdfFiles<-dir(gcmsPath,"CDF",full=TRUE)
eluFiles<-dir(gcmsPath,"ELU",full=TRUE)
# read data, peak detection results
pd<-peaksDataset(cdfFiles[1:2],mz=seq(50,550),rtrange=c(7.5,8.5))
pd<-addAMDISPeaks(pd,eluFiles[1:2])
# pairwise alignment (it is compressed by default)
ca<-clusterAlignment(pd, usePeaks = TRUE, df = 20, metric=1, type=1)
object.size(ca)
# decompress
ca<-decompress(ca)
object.size(ca)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.