Nothing
two.sample.log.ratio<-function(a,b){
return(1/(abs(log(mean(as.numeric(b))/mean(as.numeric(a)),2))))
}
two.sample.permutation.test<-function(a,b){
# Observed difference
diff.observed = mean(as.numeric(b)) - mean(as.numeric(a))
c=c(a,b)
num.comb=choose(length(a)+length(b), length(a))
number_of_permutations = if(num.comb>1000){1000}else{num.comb}
diff.random = NULL
for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
a.random = sample (c, length(a), TRUE)
b.random = sample (c, length(b), TRUE)
# Null (permuated) difference
diff.random[i] = mean(b.random) - mean(a.random)
}
pvalue = sum(abs(diff.random) >= abs(diff.observed)) / number_of_permutations
return(pvalue)
}
get.rna.fold.step<-function(){
fold.lower.end=seq(from=11, to=30, by=1)/10 # seq(from=1.1, to=3, by=0.1)
fold.middle=seq(from=32, to=50, by=2)/10
fold.upper.end=seq(from=6, to=10, by=1)
fold.cutoffs=(c(fold.lower.end, fold.middle, fold.upper.end))
return(fold.cutoffs)
}
get.protein.fold.step<-function(){
fold.lower.end=seq(from=11, to=20, by=1)/10 #fold.lower.end[[2]]==1.2 is FALSE
fold.middle=seq(from=22, to=30, by=2)/10
fold.upper.end=seq(from=4, to=10, by=1)
fold.cutoffs=(c(fold.lower.end, fold.middle, fold.upper.end))
return (fold.cutoffs)
}
get.fold.large.step<-function(){
fold.lower.end=seq(from=11, to=20, by=2)/10
fold.middle=seq(from=22, to=35, by=5)/10
fold.upper.end=seq(from=4, to=10, by=1)
fold.cutoffs=(c(fold.lower.end, fold.middle, fold.upper.end))
return(fold.cutoffs)
}
intersect.of.lists <- function(vectorlist) {
return(Reduce(intersect, vectorlist))
}
get.outline.index<-function(values){
x.order=order(values, decreasing=FALSE)
x=sort(values, decreasing=FALSE)
x.quantile=quantile(x, c(0.005, 0.1, 0.9, 0.995))
x.mean=mean(x)
x.sd=sd(x)
outline.sd.cutoff=3.37
removed.index=c()
for(i in 1:length(x)){
if((abs(x[i]-mean(x))/sd(x))<(-1*outline.sd.cutoff) |
(abs(x[i]-mean(x))/sd(x))>outline.sd.cutoff){
removed.index=c(removed.index, x.order[i])
}
}
return(removed.index)
}
find.mid.point=function(Y){
# Y is the density of a vector Y=density(vals,bw=0.5)
best.point=0
distance=1
for(x in Y$x[2:length(Y$x)]){
xt <- diff(Y$x[Y$x<=x])
yt <- rollmean(Y$y[Y$x<=x],2)
x.sum=sum(xt*yt)
if(abs(x.sum-0.5)<distance){
best.point=x
distance=abs(x.sum-0.5)
}
}
return(best.point)
}
is.installed <- function(mypkg) is.element(mypkg, installed.packages()[,1])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.