R/kl_clust-functions.R

Defines functions mod.df kl mod.parms klmod

klmod <- function(de.fit, nf, n.mods = 50) {
  m <- nrow(de.fit@fit.full)
  n <- ncol(de.fit@fit.full)
  if (m <= n.mods) {
    mod.member <- as.factor(1:m)
    return(mod.member)
  }
  sigma2 <- rowSums(de.fit@res.full ^ 2) / (n - nf)
  int.n.mods <- n.mods
  orig.n.mods <- n.mods
  int.center <- sample(x = m,
                       size = n.mods, replace = FALSE)
  center.fitFull <- de.fit@fit.full[int.center, ]
  center.var <- sigma2[int.center]

  eps <- 0.1
  mod.member <- NULL
  KL <- matrix(nrow = m,
               ncol = n.mods)
  itr <- 0
  KL.cutoff <- 1

  pos.center.fitFull <- center.fitFull
  pos.center.var <- center.var
  while (KL.cutoff > eps) {
    itr <- itr + 1
    pre.center.fitFull <- pos.center.fitFull
    pre.center.var <- pos.center.var

    temp.center.fitFull <- as.vector(t(center.fitFull))
    temp.fitFull <- as.vector(t(de.fit@fit.full))

    kldd <- t(matrix(kl(temp.center.fitFull, temp.fitFull, center.var,
                        sigma2, n=n), ncol=m))
    mod.member = apply(kldd, 1, function(x) which.min(x))

    # First of all, we check whether there is any cluster that does not
    # include any gene. For this case, we exclude this cluster from the
    # original clusters. Therefore, it reduces the number of clusters
    notempty <- 1:n.mods %in% unique(mod.member)
    #    notempty <- sort(unique(mod.member))
    # all.equal(notempty, notempty2)
    center.fitFull <- center.fitFull[notempty, ]
    center.var <- center.var[notempty]
    KL <- KL[notempty, ]

    # Once the number of clusters were decided, we need to find new centers
    # for each cluster
    if (any(!notempty)) {
      n.mods <- sum(!notempty)
    }

    # Average the mean and variance over genes included in each cluster
    l <- 1
    for (i in 1:orig.n.mods) {
      ntmp <- sum(mod.member == i)
      if (ntmp == 0) {
        next
      } else {
        if (ntmp == 1) {
          center.fitFull[l, ] <- de.fit@fit.full[mod.member == i, ]
        } else {
          center.fitFull[l, ] <- colMeans(de.fit@fit.full[mod.member == i, ])
        }
        center.var[l] <- drop(sum(sigma2[mod.member == i]) / ntmp)
        l <- l + 1
      }
    }

    pos.center.fitFull <- center.fitFull
    pos.center.var <- center.var
    if (length(pos.center.var) != length(pre.center.var)) {
      # if the n.mods is reduced
      KL.cutoff <- 1
    } else {
      KL.cutoff <- NULL
      res2 <- rowSums((pos.center.fitFull - pre.center.fitFull) ^ 2)
      normconst <- 1 / pos.center.var + 1 / pre.center.var
      centerconst <- n * ((pos.center.var / pre.center.var + pre.center.var / pos.center.var) / 2 - 1)
      KL.cutoff <- res2 / normconst + centerconst
    }
    KL.cutoff <- max(KL.cutoff)
  }
  return(as.factor(mod.member))
}

mod.parms <- function(de.fit, nf, nn, clMembers) {
  # Initlizations
  n <- ncol(de.fit@res.full)
  varFull <- rowSums(de.fit@res.full ^ 2) / (n - nf)
  varNull <- rowSums(de.fit@res.null ^ 2) / (n - nn)
  mod.membership <- clMembers
  n.mods <- length(unique(mod.membership))

  mod.fitFull <- matrix(nrow = n.mods,
                        ncol = n)
  n.per.mod <- vector(length = n.mods)
  mod.varNull <- vector(length = n.mods)
  mod.varFull <- vector(length = n.mods)
  # Calculate statistics (variance and mean) for each cluster
  for (i in 1:n.mods) {
    if(length(mod.membership[mod.membership == i]) == 1) {
      n.per.mod[i] <- 1
      mod.fitFull[i, ] <- de.fit@fit.full[mod.membership==i, ]
    } else {
      n.per.mod[i] <- sum(mod.membership == i)
      mod.fitFull[i, ] <- colMeans(de.fit@fit.full[mod.membership == i, ])
    }
    mod.varNull[i] <- mean(varNull[mod.membership == i])
    mod.varFull[i] <- mean(varFull[mod.membership == i])
  }
  mod.fitNull <- 0*mod.fitFull
  # Assign slots
  return(list(mu.full = mod.fitFull, sig.full = sqrt(mod.varFull),
              mu.null = mod.fitNull, sig.null = sqrt(mod.varNull),
              n.per.mod = n.per.mod, clustMembers = clMembers))
}

kl <- function(temp.center.fitFull, temp.fitFull, center.var, sigma2, n) {
  # Initializations
  m <- length(sigma2)
  n.cluster <- length(center.var)
  # C function to calculate kl distance
  kldd <- .C("kldistance",
             centerFit=as.double(temp.center.fitFull),
             centerVar=as.double(center.var),
             fit=as.double(temp.fitFull),
             var=as.double(sigma2),
             m=as.integer(m),
             nc=as.integer(n.cluster),
             n=as.integer(n),
             kldd=double(m * n.cluster))$kldd
  return(kldd)
}

mod.df = function(x) {
  df = try(sum(diag(x%*%solve(t(x)%*%x)%*%t(x))), silent=TRUE)
  df
}

Try the edge package in your browser

Any scripts or data that you put into this service are public.

edge documentation built on Nov. 8, 2020, 6:48 p.m.