Description Usage Arguments Details Value Author(s) Examples
Estimates the size parameter of a a negative binomial distribution from given data.
1 2 |
x |
The input data. Must be a numeric vector. |
maxCyc |
The maximum number of cycles of the numeric procedure to find the estimator. (Default = 1000). |
eta |
The weight of the exponential prior. The higher eta, the lower the estimate for the size parameter. Setting eta = 0 means that the prior is not used and, therefore, the maximum-likelihood estimator is calculated. (Default = 0). |
rmax |
Upper bound on the size parameter. This corresponds to a truncated exponential prior. If not used there is a non-zero probability that the estimator for the size parameter is ∞. (Default = Inf). |
method |
The procedure used to solve the equation ∑_{k=1} ^N ψ (x_i+r) - Nψ(r)+N \log ≤ft(\frac{r}{r+ 1/N ∑_{i=1}^N x_i} \right) - η =0 for r. This can either be "bisection" or "regula falsi". (Default="bisection"). |
Depending on the parameters you can either obtain the Maximum-likelihood estimator or the maximum-a-posteriori estimator using an exponential prior.
maximum-likelihood estimator | eta = 0 |
maximum-a-posteriori estimator | eta > 0 |
By setting the variable rmax to a positive value one can enforce an upper bound on the parameter.
The inverse of the size parameter is the overdispersion parameter.
"numeric" An estimate of the size parameter of the negative binomial distribution. The overdispersion parameter is the inverse of the size parameter of a negative binomial distribution
Guenter Klambauer klambauer@bioinf.jku.at and Thomas Unterthiner unterthiner@bioinf.jku.at
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.