R/filterData.R

Defines functions filterData

Documented in filterData

#' Filter the positions of interest
#'
#' For a group of samples this function reads the coverage information for a
#' specific chromosome directly from the BAM files. It then merges them into a
#' DataFrame and removes the bases that do not pass the cutoff. This is a
#' helper function for [loadCoverage] and [preprocessCoverage].
#'
#' @param data Either a list of Rle objects or a DataFrame with the coverage
#' information.
#' @param cutoff The base-pair level cutoff to use. It's behavior is controlled
#' by `filter`.
#' @param index A logical Rle with the positions of the chromosome that passed
#' the cutoff. If `NULL` it is assumed that this is the first time using
#' [filterData] and thus no previous index exists.
#' @param filter Has to be either `'one'` (default) or `'mean'`. In
#' the first case, at least one sample has to have coverage above `cutoff`.
#' In the second case, the mean coverage has to be greater than `cutoff`.
#' @param totalMapped A vector with the total number of reads mapped for each
#' sample. The vector should be in the same order as the samples in `data`.
#' Providing this data adjusts the coverage to reads in `targetSize`
#' library prior to filtering. See [getTotalMapped] for
#' calculating this vector.
#' @param targetSize The target library size to adjust the coverage to. Used
#' only when `totalMapped` is specified. By default, it adjusts to
#' libraries with 80 million reads.
#' @param ... Arguments passed to other methods and/or advanced arguments.
#' Advanced arguments:
#' \describe{
#' \item{verbose }{ If `TRUE` basic status updates will be printed along
#' the way.}
#' \item{returnMean }{ If `TRUE` the mean coverage is included in the
#' result. `FALSE` by default.}
#' \item{returnCoverage }{ If `TRUE`, the coverage DataFrame is returned.
#' `TRUE` by default.}
#' }
#'
#' @return A list with up to three components.
#'
#' \describe{
#' \item{coverage }{ is a DataFrame object where each column represents a
#' sample. The number of rows depends on the number of base pairs that passed
#' the cutoff and the information stored is the coverage at that given base.
#' Included only when `returnCoverage = TRUE`.}
#' \item{position }{  is a logical Rle with the positions of the chromosome
#' that passed the cutoff.}
#' \item{meanCoverage }{ is a numeric Rle with the mean coverage at each base.
#' Included only when `returnMean = TRUE`.}
#' \item{colnames }{ Specifies the column names to be used for the results
#' DataFrame. If `NULL`, names from `data` are used.}
#' \item{smoothMean }{ Whether to smooth the mean. Used only when
#' `filter = 'mean'`. This option is used internally by
#' [regionMatrix].}
#' }
#' Passed to the internal function `.smootherFstats`, see
#' [findRegions].
#'
#' @details If `cutoff` is `NULL` then the data is grouped into
#' DataFrame without applying any cutoffs. This can be useful if you want to
#' use [loadCoverage] to build the coverage DataFrame without applying any
#' cutoffs for other downstream purposes like plotting the coverage values of a
#' given region. You can always specify the `colsubset` argument in
#' [preprocessCoverage] to filter the data before calculating the F
#' statistics.
#'
#' @author Leonardo Collado-Torres
#' @export
#'
#' @importMethodsFrom IRanges '[' '[<-' '[[' colnames 'colnames<-' lapply
#' @import S4Vectors
#' @importFrom methods is
#'
#' @seealso [loadCoverage], [preprocessCoverage],
#' [getTotalMapped]
#' @examples
#' ## Construct some toy data
#' library("IRanges")
#' x <- Rle(round(runif(1e4, max = 10)))
#' y <- Rle(round(runif(1e4, max = 10)))
#' z <- Rle(round(runif(1e4, max = 10)))
#' DF <- DataFrame(x, y, z)
#'
#' ## Filter the data
#' filt1 <- filterData(DF, 5)
#' filt1
#'
#' ## Filter again but only using the first two samples
#' filt2 <- filterData(filt1$coverage[, 1:2], 5, index = filt1$position)
#' filt2
filterData <- function(data, cutoff = NULL, index = NULL, filter = "one",
    totalMapped = NULL, targetSize = 80e6, ...) {

    ## Check filter
    stopifnot(filter %in% c("one", "mean"))

    ## Advanged arguments
    # @param verbose If \code{TRUE} basic status updates will be printed along the
    # way.
    verbose <- .advanced_argument("verbose", TRUE, ...)



    # @param returnMean If \code{TRUE} the mean coverage is included in the result.
    returnMean <- .advanced_argument("returnMean", FALSE, ...)



    # @param returnCoverage If \code{TRUE}, the coverage DataFrame is returned.
    returnCoverage <- .advanced_argument("returnCoverage", TRUE, ...)


    # @param colnames Specifies the column names to be used for the results
    # DataFrame. If \code{NULL}, names from \code{data} are used.
    colnames <- .advanced_argument("colnames", NULL, ...)

    ## Initialize meanCov
    meanCov <- NULL

    ## library size adjustments
    if (!is.null(totalMapped) & targetSize != 0) {
        mappedPerXM <- totalMapped / targetSize

        ## Normalize to a given library size
        if (verbose) {
              message(paste(Sys.time(), "filterData: normalizing coverage"))
          }
        data <- mapply(function(x, d) x / d, data, mappedPerXM)
        if (verbose) {
              message(paste(Sys.time(), "filterData: done normalizing coverage"))
          }
    }

    ## If there is no cutoff to apply, just build the DataFrame
    if (is.null(cutoff)) {
        newindex <- NULL
        finalidx <- index
    } else {
        ## Construct the filtering index
        if (filter == "one") {
            for (i in seq_len(length(data))) {
                if (i == 1) {
                    newindex <- data[[i]] > cutoff
                } else {
                    newindex <- newindex | data[[i]] > cutoff
                }
            }
        } else if (filter == "mean") {
            meanCov <- Reduce("+", data) / length(data)

            smoothMean <- .advanced_argument("smoothMean", FALSE, ...)
            if (smoothMean) {
                if (verbose) message(paste(Sys.time(), "filterData: smoothing mean coverage"))
                newindex <- Rle(TRUE, length(meanCov))
                meanCov <- derfinder:::.smootherFstats(fstats = meanCov, position = newindex, ...)
            }
            newindex <- meanCov > cutoff
        }

        ## Build the final index
        if (!is.null(index)) {
            finalidx <- index
            finalidx[index] <- newindex
        } else {
            finalidx <- newindex
        }
    }

    ## Keep only bases that pass the cutoff
    if (returnMean) {
        if (is.null(meanCov)) {
            ## Calculate the mean if needed
            meanCov <- Reduce("+", data) / length(data)
        }
        if (!is.null(newindex)) {
            meanCovFiltered <- meanCov[newindex]
        } else {
            meanCovFiltered <- meanCov
        }
    }

    if (returnCoverage) {
        if (is(data, "DataFrame")) {
            if (!is.null(newindex)) {
                DF <- data[newindex, ]
            } else {
                DF <- data
            }
        } else {
            ## Subset the data and group into DataFrame
            if (!is.null(newindex)) {
                DF <- DataFrame(lapply(data, function(x) {
                    x[newindex]
                }), check.names = FALSE)
            } else {
                DF <- DataFrame(data, check.names = FALSE)
            }
        }
    }

    ## Info for the user
    if (verbose) {
        if (returnCoverage) {
            message(paste(
                Sys.time(), "filterData: originally there were",
                length(data[[1]]), "rows, now there are", NROW(DF),
                "rows. Meaning that", 100 - round(NROW(DF) / length(data[[1]]) *
                    100, 2), "percent was filtered."
            ))
        } else if (returnMean) {
            message(paste(
                Sys.time(), "filterData: originally there were",
                length(data[[1]]), "rows, now there are",
                length(meanCovFiltered), "rows. Meaning that", 100 -
                    round(length(meanCovFiltered) / length(data[[1]]) *
                        100, 2), "percent was filtered."
            ))
        }
    }

    ## Assign column names
    if (returnCoverage) {
        if (!is.null(colnames)) {
            colnames(DF) <- colnames
        }
    }

    ## Make the final resulting object.
    if (returnMean & returnCoverage) {
        res <- list(
            coverage = DF, position = finalidx,
            meanCoverage = meanCovFiltered
        )
    } else if (!returnMean & returnCoverage) {
        res <- list(coverage = DF, position = finalidx)
    } else if (returnMean & !returnCoverage) {
        res <- list(position = finalidx, meanCoverage = meanCovFiltered)
    } else {
        res <- list(position = finalidx)
    }

    return(res)
}

Try the derfinder package in your browser

Any scripts or data that you put into this service are public.

derfinder documentation built on Dec. 20, 2020, 2 a.m.