R/deco.R

Defines functions decoNSCA decoRDA

Documented in decoNSCA decoRDA

#### DECO ####
## Algorithm to find differential significant markers in
## heterogeneous cohorts including a subsampling approach and posterior
## integration with a Non-Symmetrical Correspondence Analysis to create the
## new heterogeneity statistic (h-statistic).  Authors: Francisco J.
## Campos-Laborie, Jose Manuel Sanchez-Santos & Javier De Las Rivas
## Bioinformatics & Functional Genomics Group Cancer Research Center
## (CiC-IBMCC, CSIC/USAL) Salamanca, Spain http://www.cicancer.org/
## http://bioinfow.dep.usal.es

################################### decoRDA ### Iterative function to discover differentially expressed
################################### features using LIMMA R package (eBayes method) along the data.

decoRDA <- function(data, classes = NA, control = NA,
    r = NULL, q.val = 0.01, iterations = 10000, bpparam = SerialParam(), 
    annot = FALSE, id.type = NA, attributes = NA, 
    rm.xy = FALSE, pack.db = "Homo.sapiens") {
    call <- match.call()
    
    # Assessing 'data' input.
    msg <- NA
    if (is(data, "SummarizedExperiment") | is(data, "MultiAssayExperiment")) {
        if (!exists("SummarizedExperiment")) {
            msg <- c("ERROR: 'SummarizedExperiment' is not in library.")
        } else {
            requireNamespace("SummarizedExperiment", quietly = TRUE)
        }
        if (is(assay(data), "matrix")) {
            data <- assay(data)
        } else {
            msg <- c("ERROR: 'data' object must include only one 'assay'.")
        }
    }
    if (!is.matrix(data)) {
        msg <- c("Data must be a matrix or SummarizedExperiment object")
    }
    data <- as.matrix(data)
    
    if(any(duplicated(rownames(data))))
      stop("ERROR: Duplicated rownames are not allowed.")
    
    if (!is.na(msg)) {
        stop(msg)
    }
    
    # Setting up temporary directory to write intermediate results.
    temp.path <- .createTempFile()
    message("'temp' folder will be created to store internal loop data.")
    
    # Annotating IDs to chromosome location (locus) in order to remove those
    # placed on X or Y.  It is proposed to avoid significant results from
    # unbalanced gender contrasts.
    if (rm.xy & annot) {
        if (!exists(pack.db)) {
            stop("ERROR: Annotation package '", pack.db, "' has not been loaded.")
        } else {
            requireNamespace(pack.db, quietly = TRUE)
        }
        if (id.type %in% columns(x = get(pack.db))) {
            infogenes <- AnnotateDECO(ids = rownames(data), id.type = id.type, 
                attributes = c("TXCHROM", "TXCHROM"), pack.db = pack.db, verbose = FALSE)
            chrTest <- infogenes[infogenes[, "TXCHROM"] %in% c("X", "Y", "chrX", "chrY"), id.type]
            if (length(chrTest) > 1) {
                data <- data[rownames(infogenes)[!rownames(infogenes) %in% chrTest], ]
                msg <- paste(.timestamp(), "-- Features located in X or Y chromosome have been filtered:\n", 
                  length(chrTest), "features have been discarded.")
            } else {
                msg <- paste(.timestamp(), " All features are placed on X or Y chromosome,
                       filter will not be applied.")
            }
        } else {
            msg <- paste(.timestamp(), "It was not possible to assign chromosome location
                   to input IDs.")
        }
        message(msg)
    }

    ## Initial matrix for resampling design...
    results <- matrix(0, nrow = 1, ncol = 6)
    
    ## Defining classes and sample sizes
    unsup <- all(is.na(classes))
    multi <- FALSE
    if (!unsup) {
        classes <- factor(classes)
        if(length(levels(classes)) == 2 & is.na(control))
          control <- levels(classes)[1]
        
        combin <- .combCalcM(data, classes, control, 
                             iterations, multi, r, 
                             results)
        
        categories.control <- combin$categories.control
        categories.case <- combin$categories.case
        multi <- combin$multi
        cl1 <- combin$cl1
        cl2 <- combin$cl2
        n1 <- combin$n1
        n2 <- combin$n2
        results <- combin$results
        data <- combin$data
        iterations <- combin$iterations
    } else {
        n1 <- dim(data)[2]
        n2 <- dim(data)[2]
        categories.control <- seq_len(dim(data)[2])
        categories.case <- seq_len(dim(data)[2])
        message("\n Classes vector not defined as input.
                UNSUPERVISED analysis will be carry out.\n")
    }
    
    ## Setting up subsampling size 'r'.
    if ((is.null(r) || r <= 0)) {
        r <- round(sqrt(min(c(n1, n2))), digits = 0)
    }
    if (r < 3) {
        r <- 3
        message(" Resampling size set to 3.\n")
    }
    if (r > n1 || r > n2) {
        stop("ERROR: Resampling size can not be
             higher than samples.")
    }
    
    ## Message to user
    if (unsup) {
        msg <- paste(.timestamp(), "-- Resampling design:\n Unsupervised analysis for", 
            dim(data)[2], "samples.\n Resampling size:", r, "\n adj.p.value threshold:", 
            q.val)
    } else if (!multi) {
        msg <- paste(.timestamp(), "-- Resampling design:\n Binary analysis for", 
            dim(data)[2], "samples.\n Control or 0 --> '", cl1, "' with", 
            n1, "samples.\n Case or 1    --> '", cl2, "' with", n2, "samples.\n", 
            "Resampling size for both classes:", r, "\n adj.p.value threshold:", 
            q.val)
    } else {
        msg <- paste(.timestamp(), "-- Resampling design:\n Multiple supervised analysis for", 
            dim(data)[2], "samples and", length(levels(classes)), "classes:\n", 
            paste(levels(classes), collapse = "/"), ".\n Resampling size for all classes:", 
            r, "\n adj.p.value threshold:", q.val)
    }
    
    message(msg)
    
    ## Combinatorial calculations for binary and unsupervised designs
    results <- .combCalc(iterations, multi, classes, r, 
                         results, categories.control, 
                         categories.case, n1, n2)
    
    ## SUBSAMPLING STEP using LIMMA
    limmaRes <- .LIMMAcalc(data, results, classes, control, q.val, call, r, 
        temp.path, bpparam, multi, n1, n2)
    res <- limmaRes$res
    results <- limmaRes$results
    
    ## FREQUENCY MATRIX: Reading intermediate files to produce a frequency
    ## matrix
    message(.timestamp(), " -- Summarizing results...")
    intermediate <- .freqMatrix(limmaRes, data, n1, ifelse(unsup, 0, n2), 
        r, multi, unsup)
    
    # Matrix of combinations and number of events.
    ord <- order(results[, "nFeatures"], decreasing = TRUE)
    res$results <- results[ord, -(r * 2 + 2)]
    res$pos.iter <- length(limmaRes$limma1)/2
    
    if (!unsup & !multi) {
        res$incidenceMatrix <- gdata::interleave(intermediate$UP, intermediate$DOWN, 
            append.source = TRUE, sep = "deco", drop = FALSE)
    } else {
        res$incidenceMatrix <- intermediate$MULTI
    }
    
    if (length(intermediate$both.feat) > 0) {
        res$incidenceMatrix <- rbind(res$incidenceMatrix, intermediate$both.feat.mx)
    }
    
    res$incidenceMatrix <- res$incidenceMatrix[, colnames(res$incidenceMatrix) %in% 
        colnames(data)]
    
    ### CALCULATING FINAL STATISTICS Creating a table to contain all statistical
    ### information about features.
    j <- length(limmaRes$limma1)/2
    top_eje <- intermediate$top_eje[2:length(rownames(intermediate$top_eje)), 
        ]
    res$subStatFeature <- as.data.frame(matrix(ncol = 12, nrow = length(unique(top_eje[, 
        c("ID")]))))
    colnames(res$subStatFeature) <- c("ID", "UpDw", "Avrg.logFC", "Best.adj.P.Val", 
        "Repeats", "FR.Repeats", "RF.Positive.Repeats", "Chi.Square", "P.Val.ChiSq", 
        "ChiSq.adj.P.Val.FDR")
    res$subStatFeature[, c("ID")] <- unique(top_eje[, c("ID")])
    res$subStatFeature[, 3:10] <- 0
    ncomb <- dim(results)[1]
    
    # ## Summarizing statistics...
    message(.timestamp(), " -- Calculating statistics...")
    suppressWarnings(limma2 <- bplapply(seq_len(dim(res$subStatFeature)[1]), 
        FUN = .statCalc, BPPARAM = bpparam, tab = res$subStatFeature, top_eje, 
        ncomb, j))
    
    res$subStatFeature <- as.data.frame(do.call(rbind, limma2))
    res$subStatFeature[, 3:10] <- suppressWarnings(apply(res$subStatFeature[, 
        3:10], 2, as.numeric))
    
    message(.timestamp(), " -- Computed ", length(unique(top_eje[, c("ID")])), 
        " features.\n")
    
    ## Adjusting p.values from Chi.Square.
    res$subStatFeature[, c("ChiSq.adj.P.Val.FDR")] <- p.adjust(res$subStatFeature[, 
        c("P.Val.ChiSq")], method = "fdr", n = length(res$subStatFeature[, 
        c("P.Val.ChiSq")]))
    
    # Ordering columns...
    res$subStatFeature <- res$subStatFeature[, c("ID", "UpDw", "Avrg.logFC", 
        "Best.adj.P.Val", "Repeats", "FR.Repeats", "RF.Positive.Repeats", 
        "Chi.Square", "P.Val.ChiSq", "ChiSq.adj.P.Val.FDR")]
    
    ## Annotating features using 'AnnotateDECO' function.
    if (annot) {
        infogenes <- AnnotateDECO(ids = as.character(res$subStatFeature[, 
            c("ID")]), id.type = id.type, attributes = attributes, pack.db = pack.db)
        res$subStatFeature <- cbind(res$subStatFeature, infogenes[as.vector(res$subStatFeature[, 
            c("ID")]), ])
    }
    # Making up all statistics.
    res$subStatFeature <- droplevels.data.frame(as.data.frame(res$subStatFeature))
    res$subStatFeature[, 3:10] <- suppressWarnings(apply(res$subStatFeature[, 
        3:10], 2, as.numeric))
    if (!unsup & !multi) {
        res$subStatFeature[, c("UpDw")] <- intermediate$UpDw[match(as.character(res$subStatFeature[, 
            c("ID")]), names(intermediate$UpDw))]
    } else {
        res$subStatFeature <- res$subStatFeature[, colnames(res$subStatFeature) != 
            "UpDw"]
    }
    
    # Standard.Chi.Square
    res$subStatFeature[, "Standard.Chi.Square"] <- ((as.numeric(res$subStatFeature[, 
        c("Chi.Square")]) - (2 * as.numeric(res$subStatFeature[, c("Repeats")])))/sqrt(4 * 
        as.numeric(res$subStatFeature[, c("Repeats")])))
    
    res$subStatFeature <- res$subStatFeature[order(res$subStatFeature$Standard.Chi.Square, 
        decreasing = TRUE), ]
    rownames(res$subStatFeature) <- res$subStatFeature[, "ID"] <- as.character(res$subStatFeature[, 
        "ID"])
    
    # Removing temporary dir and all intermediate files generated.
    unlink(temp.path, recursive = TRUE)
    
    message(.timestamp(), " -- Done.\n")
    
    return(res)
}


################################# decoNSCA ### Function to carry out factorial analysis with NSCA
################################# (Non-Symmetrical Correspondence Analysis) of the incidenceMatrix
################################# generated by 'DECO' subsampling function.

decoNSCA <- function(sub, v = 80, k.control = NULL, k.case = NULL, rep.thr = 3, 
    bpparam = SerialParam(), samp.perc = 0.05, method = "ward.D") {
    call <- match.call()
    
    # Agglomeration method for hierarchical clustering of samples.
    if (all(!(is.null(method))) && !(method %in% c("ward.D", "ward.D2", "single", 
        "complete", "average", "mcquitty", "median", "centroid"))) {
        stop("ERROR: Input 'method.heatmap' have to be one of 'hclust'{stats} function methods:
         ward.D, ward.D2, single, complete, average, mcquitty, median or centroid")
    }
    
    data <- sub$data
    
    # Variable with original IDs used to substitute modified IDs of
    # incidenceMatrix.
    message(.timestamp(), " -- Applying repeats threshold...\n")
    
    ## Threshold for Repeats
    Sub <- .repThr(sub, rep.thr, samp.perc)
    g.names <- Sub$g.names
    sub <- Sub$sub
    
    # Setting up both classes and control for 'binary' design.
    if (all(!(is.na(sub$classes))) & length(levels(sub$classes)) <= 2) {
        # Instructions just for 'binary' RDA design.
        if (is.na(sub$control)) {
            cl1 <- levels(sub$classes)[1]
            cl2 <- levels(sub$classes)[2]
            ind1 <- which(sub$classes == cl1)
            ind2 <- which(sub$classes == cl2)
        } else {
            cl1 <- sub$control
            cl2 <- levels(sub$classes)[which(levels(sub$classes) != sub$control)]
            ind1 <- which(sub$classes == cl1)
            ind2 <- which(sub$classes == cl2)
            sub$classes <- sub$classes[c(ind1, ind2)]
        }
        n1 <- length(ind1)
        n2 <- length(ind2)
        sub$incidenceMatrix <- sub$incidenceMatrix[, names(sub$classes)]
        
        # Calculating raw 'delta.signal' differences between classes for all
        # differential features.
        d <- sub$data[rownames(sub$data) %in% rownames(sub$subStatFeature), 
            ]
        
        delta.signal <- rowMeans(d[, (n1 + 1):(n1 + n2)]) - rowMeans(d[, seq_len(n1)])
        
        sub$subStatFeature <- data.frame(sub$subStatFeature[order(sub$subStatFeature[, 
            c("ID")]), ], delta.signal = delta.signal[order(names(delta.signal))])
        # Standard deviation per class
        sd.Ctrl <- apply(sub$data[rownames(sub$subStatFeature), seq_len(n1)], 
            1, sd)
        sd.Case <- apply(sub$data[rownames(sub$subStatFeature), (n1 + 1):(n1 + 
            n2)], 1, sd)
        
        # Classification of feature profiles: 'ideal', 'generic', 'specific, and
        # 'both'.
        overlap <- overlapC(sub, cl1, bpparam)
        
        profile <- overlap$profile
        overlap <- overlap$overlap
        
        UpDw <- sub$subStatFeature$UpDw
        names(UpDw) <- as.character(sub$subStatFeature$ID)
    } else {
        n1 <- dim(data)[2]
        n2 <- dim(data)[2]
        SD <- apply(sub$data, 1, function(x) sd(x, na.rm = TRUE))
    }
    # Applying NSCA to all samples or both classes.
    z <- 1
    while (z %in% seq_len(2)) {
        # NSCA for 'unsupervised' and 'multiclass' design.
        if (all(is.na(sub$classes)) || length(levels(sub$classes)) > 2) {
            # Removing features or samples with any differential event.
            mx <- sub$incidenceMatrix[rowSums(sub$incidenceMatrix) > 0, ]
            mx <- mx[, colSums(sub$incidenceMatrix) > 0]
            message(.timestamp(), "-- Calculating all samples together...")
            # NSCA
            nsc.res <- NSCACluster(mx = mx, data = sub$data, k = k.control, 
                method.dend = method, id.names = g.names, v = v)
            k <- k.control
            diffMX <- cbind(sub$subStatFeature, nsc.res$infoFeature[rownames(sub$subStatFeature), 
                ])
            diffMX <- cbind(diffMX, sd = SD[rownames(sub$subStatFeature)])
            # Order for columns of final table with statistical information.
            coln <- c("ID", "SYMBOL", "hgnc_symbol", "Repeats", "Repeats.index", 
                "FR.Repeats", "Avrg.logFC", "Standard.Chi.Square", "P.Val.ChiSq", 
                "ChiSq.adj.P.Val.FDR", "sd", "Tau.feature", "Dendrogram.group", 
                "h.Best", "h.Range", "GENENAME")
            ord <- na.omit(match(c(coln, colnames(diffMX)[!colnames(diffMX) %in% 
                coln]), colnames(diffMX)))
            z <- 3
        }
        # NSCA for 'control' samples
        if (z == 1) {
            # Removing features or samples with any differential event.
            mx <- sub$incidenceMatrix[rowSums(sub$incidenceMatrix[, seq_len(n1)]) > 
                0, seq_len(n1)]
            mx <- mx[, colSums(sub$incidenceMatrix[, seq_len(n1)]) > 0]
            message(.timestamp(), "-- Calculating control group...")
            # NSCA
            nsc.res1 <- NSCACluster(mx = mx, data = sub$data, k = k.control, 
                method.dend = method, UpDw = UpDw, dir = "UP", id.names = g.names, 
                v = v, label = cl1, raw = rowMeans(sub$data[, colnames(mx)]))
            colnames(nsc.res1$infoFeature) <- paste(colnames(nsc.res1$infoFeature), 
                "Ctrl", sep = ".")
            diffMX <- cbind(sub$subStatFeature, sd.Ctrl = sd.Ctrl[rownames(sub$subStatFeature)], 
                nsc.res1$infoFeature[rownames(sub$subStatFeature), c("Tau.feature.Ctrl", 
                  "Dendrogram.group.Ctrl", "h.Best.Ctrl", "h.Range.Ctrl")])
        }
        # NSCA for 'case' samples
        if (z == 2) {
            # Removing features or samples with any differential event.
            mx <- sub$incidenceMatrix[rowSums(sub$incidenceMatrix[, (n1 + 
                1):(n1 + n2)]) > 0, (n1 + 1):(n1 + n2)]
            mx <- mx[, colSums(sub$incidenceMatrix[, (n1 + 1):(n1 + n2)]) > 
                0]
            message(.timestamp(), " -- Calculating case group...")
            # NSCA
            nsc.res2 <- NSCACluster(mx = mx, data = sub$data, k = k.case, 
                method.dend = method, UpDw = UpDw, dir = "DOWN", id.names = g.names, 
                v = v, label = cl2, raw = rowMeans(sub$data[, colnames(mx)]))
            colnames(nsc.res2$infoFeature)[seq_len(length(colnames(nsc.res2$infoFeature)) - 
                1)] <- paste(colnames(nsc.res2$infoFeature)[seq_len(length(colnames(nsc.res2$infoFeature)) - 
                1)], "Case", sep = ".")
            diffMX <- cbind(diffMX, sd.Case = sd.Case[rownames(sub$subStatFeature)], 
                overlap.Ctrl.Case = overlap[rownames(sub$subStatFeature)], 
                nsc.res2$infoFeature[rownames(sub$subStatFeature), c("Tau.feature.Case", 
                  "Dendrogram.group.Case", "h.Best.Case", "h.Range.Case")])
            # Standard.Chi.Square calculation.
            diffMX <- cbind(diffMX, Profile = profile[rownames(sub$subStatFeature)])
            # Order for columns of final table with statistical information.
            coln <- c("ID", "SYMBOL", "hgnc_symbol", "UpDw", "Profile", "overlap.Ctrl.Case", 
                "Repeats", "Repeats.index", "FR.Repeats", "delta.signal", 
                "Avrg.logFC", "Standard.Chi.Square", "P.Val.ChiSq", "ChiSq.adj.P.Val.FDR", 
                "sd.Ctrl", "Tau.feature.Ctrl", "Dendrogram.group.Ctrl", "h.Best.Ctrl", 
                "h.Range.Ctrl", "sd.Case", "Tau.feature.Case", "Dendrogram.group.Case", 
                "h.Best.Case", "h.Range.Case", "GENENAME")
            ord <- na.omit(match(c(coln, colnames(diffMX)[!colnames(diffMX) %in% 
                coln]), colnames(diffMX)))
        }
        z <- z + 1
    }
    # Making up of final statistical table.
    diffg <- data.frame(diffMX[, c(ord)], diffMX[, na.action(ord)])
    colnames(diffg) <- c(colnames(diffMX)[c(ord)], colnames(diffMX)[na.action(ord)])
    # Creating final result object.
    if (!(all(is.na(sub$classes))) & !length(levels(sub$classes)) > 2) {
        ord <- with(diffg, order(Profile, -Standard.Chi.Square))
        diffg <- diffg[ord, ]
        results <- new("deco", featureTable = as.data.frame(diffg[, !duplicated(colnames(diffg))]), 
            NSCAcluster = list(Control = nsc.res1, Case = nsc.res2), incidenceMatrix = sub$incidenceMatrix, 
            classes = as.factor(sub$classes), pos.iter = sub$pos.iter, control = as.character(sub$control), 
            q.val = sub$q.val, rep.thr = rep.thr, samp.perc = samp.perc, subsampling.call = sub$call, 
            nsca.call = call)
    } else {
        ord <- order(rowMeans(apply(cbind(diffg$Standard.Chi.Square, diffg$Standard.Chi.Square, 
            diffg$Repeats, diffg$sd, diffg$h.Range), 2, function(x) rank(-x))))
        diffg <- diffg[ord, ]
        results <- new("deco", featureTable = as.data.frame(diffg[, !duplicated(colnames(diffg))]), 
            NSCAcluster = list(All = nsc.res), incidenceMatrix = sub$incidenceMatrix, 
            classes = as.factor(sub$classes), pos.iter = sub$pos.iter, control = as.character(sub$control), 
            q.val = sub$q.val, rep.thr = rep.thr, samp.perc = samp.perc, subsampling.call = sub$call, 
            nsca.call = call)
    }
    
    return(results)
}

Try the deco package in your browser

Any scripts or data that you put into this service are public.

deco documentation built on Nov. 8, 2020, 7:45 p.m.