Nothing
############################################
#' Class deco
#'
#' Class \code{deco}.
#'
#' @name deco-class
#' @rdname deco-class
#' @exportClass deco
setClass(Class = "deco", slots = c(featureTable = "data.frame", NSCAcluster = "list",
incidenceMatrix = "data.frame", classes = "factor", pos.iter = "numeric",
control = "character", q.val = "numeric", rep.thr = "numeric", samp.perc = "numeric",
subsampling.call = "call", nsca.call = "call"), sealed = FALSE)
############################################
#' Method featureTable
#' @name featureTable
#' @rdname deco-class
#' @exportMethod featureTable
setGeneric("featureTable", function(object) standardGeneric("featureTable"))
#'
#' @rdname deco-class
#' @aliases featureTable,deco-method
setMethod("featureTable", signature = "deco", definition = function(object) object@featureTable)
############################################
#' Method NSCAcluster
#' @name NSCAcluster
#' @rdname deco-class
#' @exportMethod NSCAcluster
setGeneric("NSCAcluster", function(object) standardGeneric("NSCAcluster"))
#'
#' @rdname deco-class
#' @aliases NSCAcluster,deco-method
setMethod("NSCAcluster", signature = "deco", definition = function(object) object@NSCAcluster)
############################################
#'
#' @rdname deco-class
#' @aliases show,deco-method
setMethod("show", "deco", function(object) {
cat("\nDecomposing Heterogeneous Cohorts from Omic profiling: DECO\nSummary:\n")
cat("\nAnalysis design: ")
if (length(object@NSCAcluster) == 2) {
cat("Binary\nClasses compared:")
print(table(object@classes))
} else if (all(is.na(object@classes))) {
cat("Unsupervised\n")
} else {
cat("Multiclass\nClasses compared:")
print(table(object@classes))
}
cat("\n")
thr <- data.frame(`RDA q.value` = object@q.val, `Minimum repeats` = object@rep.thr,
`Percentage of affected samples` = object@samp.perc * 100, `NSCA variability` = object@NSCAcluster[[1]]$var)
rownames(thr) <- "Thresholds"
printCoefmat(thr, digits = 3)
cat("\nNumber of features out of thresholds:", dim(object@featureTable)[1],
"\n")
cat("Number of samples affected:", dim(object@incidenceMatrix)[2], "\n")
cat("Number of positive RDA comparisons:", object@pos.iter, "\n")
cat("Number of total RDA comparisons:", round(object@featureTable[1, c("Repeats")]/object@featureTable[1,
c("FR.Repeats")], digits = 0), "\n\n")
cat("RDA call:\n")
print(object@subsampling.call)
cat("NSCA call:\n")
print(object@nsca.call)
})
############################################
#' Method summary
#'
#' @rdname deco-class
#' @aliases summary,deco-method
setMethod("summary", "deco", function(object, ...) {
cat("Decomposing Heterogeneous Cohorts from Omic profiling: DECO\nSummary:\n")
cat("\nAnalysis design: ")
if (length(object@NSCAcluster) == 2) {
cat("Binary\nClasses compared:")
print(table(object@classes))
} else if (all(is.na(object@classes))) {
cat("Unsupervised\n")
} else {
cat("Multiclass\nClasses compared:")
print(table(object@classes))
}
cat("\n")
thr <- data.frame(`RDA q.value` = object@q.val, `Minimum repeats` = object@rep.thr,
`Percentage of affected samples` = object@samp.perc * 100, `NSCA variability` = object@NSCAcluster[[1]]$var)
rownames(thr) <- "Thresholds"
printCoefmat(thr, digits = 3)
cat("\nNumber of features out of thresholds:", dim(object@featureTable)[1],
"\n")
if ("Profile" %in% colnames(object@featureTable)) {
cat("Feature profile table:")
print(table(object@featureTable$Profile))
}
cat("Number of samples affected:", dim(object@incidenceMatrix)[2], "\n")
cat("Number of positive RDA comparisons:", object@pos.iter, "\n")
cat("Number of total RDA comparisons:", round(object@featureTable[1, c("Repeats")]/object@featureTable[1,
c("FR.Repeats")], digits = 0), "\n\n")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.