Nothing
#' Convex Analysis of Mixtures
#'
#' This function performs a fully unsupervised computational deconvolution
#' to identify marker genes that define each of the multiple
#' subpopulations, and estimate the proportions of these subpopulations in
#' the mixture tissues as well as their respective expression profiles.
#' @param data Matrix of mixture expression profiles.
#' Data frame, SummarizedExperiment or ExpressionSet object will be
#' internally coerced into a matrix.
#' Each row is a gene and each column is a sample.
#' Data should be in non-log linear space with non-negative numerical values
#' (i.e. >= 0). Missing values are not supported.
#' All-zero rows will be removed internally.
#' @param K The candidate subpopulation number(s), e.g. K = 2:8.
#' @param corner.strategy The method to find corners of convex hull.
#' 1: minimum sum of margin-of-errors; 2: minimum sum of reconstruction
#' errors. The default is 2.
#' @param dim.rdc Reduced data dimension;
#' should be not less than maximum candidate K.
#' @param thres.low The lower bound of percentage of genes to keep for CAM
#' with ranked norm. The value should be between 0 and 1.
#' The default is 0.05.
#' @param thres.high The higher bound of percentage of genes to keep for CAM
#' with ranked norm. The value should be between 0 and 1.
#' The default is 0.95.
#' @param cluster.method The method to do clustering.
#' The default "K-Means" will use \code{\link{kmeans}}.
#' The alternative "apcluster" will use
#' \code{\link[apcluster]{apclusterK-methods}}.
#' @param cluster.num The number of clusters; should be much larger than K.
#' The default is 50.
#' @param MG.num.thres The clusters with the gene number smaller than
#' MG.num.thres will be treated as outliers.
#' The default is 20.
#' @param lof.thres Remove local outlier using \code{\link[DMwR]{lofactor}}.
#' MG.num.thres is used as the number of neighbors in the calculation of
#' the local outlier factors.
#' The default value 0.02 will remove top 2\% local outliers.
#' Zero value will disable lof.
#' @param quick.select The number of candidate corners kept after quickhull
#' and SFFS greedy search. If Null, only quickhull is applied.
#' The default is 20. If this value is larger than the number of candidate
#' corners after quickhull, greedy search will also not be applied.
#' @param sample.weight Vector of sample weights. If NULL, all samples have
#' the same weights. The length should be the same as sample numbers.
#' All values should be positive.
#' @param generalNMF If TRUE, the decomposed proportion matrix has no sum-to-one
#' constraint for each row. The default is FALSE.
#' TRUE value brings two changes: (1) Without assuming samples are
#' normalized, the first principal component will not forced to be along
#' c(1,1,..,1) but a standard PCA will be applied during preprocessing.
#' (2) Without sum-to-one constraint for each row, the scale ambiguity of
#' each column vector in proportion matrix will not be removed.
#' @param cores The number of system cores for parallel computing.
#' If not provided, one core for each element in K will be invoked.
#' Zero value will disable parallel computing.
#' @details This function includes three necessary steps to decompose a matrix
#' of mixture expression profiles: data preprocessing, marker gene cluster
#' search, and matrix decomposition. They are implemented in
#' \code{\link{CAMPrep}}, \code{\link{CAMMGCluster}} and
#' \code{\link{CAMASest}}, separately.
#' More details can be found in the help document of each function.
#'
#' For this function, you needs to specify the range of possible
#' subpopulation numbers and the percentage of low/high-expressed genes to
#' be removed. Typically, 30\% ~ 50\% low-expressed genes can be removed from
#' gene expression data. The removal of high-expressed genes has much less
#' impact on results, and usually set to be 0\% ~ 10\%.
#'
#' This function can also analyze other molecular expression data, such as
#' proteomics data. Much less low-expressed proteins need to be removed,
#' e.g. 0\% ~ 10\%, due to a limited number of proteins without missing values.
#' @return An object of class "\code{\link{CAMObj}}" containing the following
#' components:
#' \item{PrepResult}{An object of class "\code{\link{CAMPrepObj}}" containing
#' data preprocessing results from \code{\link{CAMPrep}} function.}
#' \item{MGResult}{A list of "\code{\link{CAMMGObj}}" objects containing
#' marker gene detection results from \code{\link{CAMMGCluster}} function for
#' each K value.}
#' \item{ASestResult}{A list of "\code{\link{CAMASObj}}" objects containing
#' estimated proportions, subpopulation-specific expressions and mdl values
#' from \code{\link{CAMASest}} function for each K value.}
#' @export
#' @examples
#' #obtain data
#' data(ratMix3)
#' data <- ratMix3$X
#'
#' #set seed to generate reproducible results
#' set.seed(111)
#'
#' #CAM with known subpopulation number
#' rCAM <- CAM(data, K = 3, dim.rdc = 3, thres.low = 0.30, thres.high = 0.95)
#' #Larger dim.rdc can improve performance but increase time complexity
#'
#' \dontrun{
#' #CAM with a range of subpopulation number
#' rCAM <- CAM(data, K = 2:5, dim.rdc = 10, thres.low = 0.30, thres.high = 0.95)
#'
#' #Use "apcluster" to aggregate gene vectors in CAM
#' rCAM <- CAM(data, K = 2:5, dim.rdc = 10, thres.low = 0.30, thres.high = 0.95,
#' cluster.method = 'apcluster')
#'
#' #CAM with quick selection to reduce time complexity
#' rCAM <- CAM(data, K = 3, dim.rdc = 10, thres.low = 0.30, thres.high = 0.95,
#' quick.select = 20)
#'
#' #CAM with different sample weights (e.g. adjusted based on sample quality)
#' rCAM <- CAM(data, K = 3, dim.rdc = 5, thres.low = 0.30, thres.high = 0.95,
#' sample.weight = c(rep(10,11),rep(1,10)))
#'
#' #CAM for general NMF (no sum-to-one contraint for proportion matrix)
#' rCAM <- CAM(data, K = 3, dim.rdc = 5, thres.low = 0.30, thres.high = 0.95,
#' generalNMF = TRUE)
#' }
CAM <- function(data, K = NULL, corner.strategy = 2, dim.rdc = 10,
thres.low = 0.05, thres.high = 0.95,
cluster.method = c('K-Means', 'apcluster'),
cluster.num = 50, MG.num.thres = 20, lof.thres = 0.02,
quick.select = NULL, sample.weight = NULL,
generalNMF = FALSE, cores = NULL){
if (is.null(K)) {
stop("K is missing")
}
if (!is.numeric(K)) {
stop("K is not numeric")
}
if (is(data, "data.frame")) {
data <- as.matrix(data)
} else if (is(data, "SummarizedExperiment")) {
data <- SummarizedExperiment::assay(data)
} else if (is(data, "ExpressionSet")) {
data <- Biobase::exprs(data)
} else if (is(data, "matrix") == FALSE) {
stop("Only matrix, data frame, SummarizedExperiment and ExpressionSet
object are supported for expression data!")
}
if (sum(is.na(data)) > 0) {
stop("Data with missing values are not supported!")
}
if (sum(data<0) > 0) {
stop("Only non-negative data are supported!")
}
if (is.null(rownames(data))) {
rownames(data) <- seq_len(nrow(data))
}
if (dim.rdc < max(K)) {
warning("dim.rdc is less than max(K)!")
}
data <- data[rowSums(data) > 0,]
################ Preprocessing ################
message('Preprocessing\n')
PrepResult <- CAMPrep(data, dim.rdc, thres.low, thres.high, cluster.method,
cluster.num, MG.num.thres, lof.thres, quick.select,
sample.weight, generalNMF)
################ Marker Gene Selection ################
coreParam <- NULL
if (length(K) > 1 && (is.null(cores) || cores > 0)) {
registered()
if (is.null(cores)) {
coreParam <- SnowParam(workers = length(K), type = "SOCK")
} else if (cores > 0) {
coreParam <- SnowParam(workers = cores, type = "SOCK")
}
}
message('Marker Gene Selection\n')
MGResult<-list()
if (is.null(coreParam)) {
MGResult <- lapply(K, CAMMGCluster, PrepResult, generalNMF)
} else {
MGResult <- bplapply(K, CAMMGCluster, PrepResult, generalNMF,
BPPARAM = coreParam)
}
names(MGResult) <- as.character(K)
################ A and S Matrix Estimation ################
message('A and S Matrix Estimation\n')
if (is.null(coreParam)) {
ASestResult <- lapply(MGResult, CAMASest, PrepResult, data,
corner.strategy, generalNMF)
} else {
ASestResult <- bplapply(MGResult, CAMASest, PrepResult, data,
corner.strategy, generalNMF,
BPPARAM = coreParam)
}
names(ASestResult) <- as.character(K)
return(new("CAMObj",PrepResult=PrepResult,
MGResult=MGResult,
ASestResult=ASestResult))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.