Nothing
#' Integration of Disease Similarity Methods
#'
#' dSimer is an R package which provides computation of nine
#' methods for measuring disease-disease similarity, including a
#' standard cosine similarity measure and eight function-based
#' methods. The disease similarity matrix obtained from these nine
#' methods can be visualized through heatmap and network. Biological
#' data widely used in disease-disease associations study are also
#' provided by dSimer.
#'
#' \tabular{ll}{ Package: \tab dSimer\cr Type: \tab Package\cr Version: \tab
#' 1.1.0\cr Date: \tab 12-10-2015\cr biocViews:\tab Software, Visualization,
#' Network\cr Depends: \tab R (>= 3.3.0), igraph (>= 1.0.1)\cr Imports: \tab
#' stats, Rcpp (>= 0.11.3), ggplot2, reshape2, GO.db, AnnotationDbi, org.Hs.eg.db,
#' graphics\cr Suggests: \tab knitr, rmarkdown, BiocStyle\cr LinkingTo: \tab
#' Rcpp\cr License: \tab GPL (>= 2)\cr }
#'
#' @name dSimer-package
#' @aliases dSimer-package dSimer
#' @docType package
#' @author Min Li, Peng Ni
#' @keywords package
NULL
#' d2g_fundo_entrezid
#'
#' a list of disease-gene associations from FunDO.
#' @name d2g_fundo_entrezid
#' @aliases d2g_fundo_entrezid
#' @docType data
#' @keywords dataset
#' @return d2g_fundo_entrezid is a named list of length 1855 which stored disease-gene
#' associations from FunDO. The names are the DOIDs (DOIDs are ids of terms
#' in Disease Ontology, e.g. "DOID:4" ) and list elements are vectors of Entrez gene IDs.
#' @examples
#' data(d2g_fundo_entrezid)
#' @references Osborne J D, Flatow J, Holko M, et al. Annotating the human genome
#' with Disease Ontology[J]. BMC genomics, 2009, 10(Suppl 1): S6.
NULL
#' d2g_fundo_symbol
#'
#' a list of disease-gene associations from FunDO.
#' @name d2g_fundo_symbol
#' @aliases d2g_fundo_symbol
#' @docType data
#' @keywords dataset
#' @return d2g_fundo_symbol is a named list of length 1855 which stored disease-gene
#' associations from FunDO. The names are the DOIDs (DOIDs are ids of terms
#' in Disease Ontology, e.g. "DOID:4" ) and list elements are vectors of gene symbols.
#' @examples
#' data(d2g_fundo_symbol)
#' @references Osborne J D, Flatow J, Holko M, et al. Annotating the human genome
#' with Disease Ontology[J]. BMC genomics, 2009, 10(Suppl 1): S6.
NULL
#' d2g_separation
#'
#' a list of disease-gene associations from the reference paper (see below).
#' @name d2g_separation
#' @aliases d2g_separation
#' @docType data
#' @keywords dataset
#' @return d2g_separation is a named list of length 299 which stored disease-gene
#' associations from the reference paper (see below). The names are diseases and
#' list elements are vectors of gene entrez ids.
#' @examples
#' data(d2g_separation)
#' @references Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease
#' relationships through the incomplete interactome[J]. Science, 2015,
#' 347(6224): 1257601.
NULL
#' go2g_sample
#'
#' a sample list of GO term-gene associations.
#' @name go2g_sample
#' @aliases go2g_sample
#' @docType data
#' @keywords dataset
#' @return go2g_sample is a named list of length 465. The names are GO term ids (GOIDs)
#' and list elements are vectors of gene symbols.
#' The entire data of GO term-gene assos can be obtained by function get_GOterm2GeneAssos.
#' @examples
#' data(go2g_sample)
#' @seealso \code{\link{get_GOterm2GeneAssos}}
NULL
#' d2go_sample
#'
#' a sample list of disease-GO term associations.
#' @name d2go_sample
#' @aliases d2go_sample
#' @docType data
#' @keywords dataset
#' @return d2go_sample is a named list of length 3. The names are are the DOIDs
#' (DOIDs are ids of terms in Disease Ontology, e.g. "DOID:4" ) and list
#' elements are vectors of GO term ids.
#' The entire data of disease-GO term associations can be obtained by function HypergeometricTest.
#' @examples
#' data(d2go_sample)
#' @seealso \code{\link{HypergeometricTest}}
NULL
#' HumanNet_sample
#'
#' a sample of HumanNet likelihood score data which will be used in method FunSim.
#' @name HumanNet_sample
#' @aliases HumanNet_sample
#' @docType data
#' @keywords dataset
#' @return HumanNet_sample is a data.frame has 22708 rows and 3 columns. Each row
#' indicates a pair of genes and their normalized likelihood score in HumanNet.
#' HumanNet_sample will be used in method FunSim after being converted to list
#' by method LLSn2List.
#' The entire data of HumanNet can be downloaded from
#' the website http://www.functionalnet.org/humannet/ .
#' @examples
#' data(HumanNet_sample)
#' @references Cheng L, Li J, Ju P, et al. SemFunSim: a new method for measuring
#' disease similarity by integrating semantic and gene functional association[J].
#' PloS one, 2014, 9(6): e99415.
#' @seealso \code{\link{FunSim}}, \code{\link{LLSn2List}}
NULL
#' PPI_HPRD
#'
#' PPI data from HPRD
#' @name PPI_HPRD
#' @aliases PPI_HPRD
#' @docType data
#' @keywords dataset
#' @return PPI_HPRD is a data.frame of 36867 rows and 2 columns. Each rows indicates
#' an interaction of two gene symbols. It was fetched from HPRD.
#' @examples
#' data(PPI_HPRD)
#' @references Prasad T S K, Goel R, Kandasamy K, et al. Human protein reference
#' database-2009 update[J]. Nucleic acids research, 2009, 37(suppl 1): D767-D772.
NULL
#' interactome
#'
#' interactome data
#' @name interactome
#' @aliases interactome
#' @docType data
#' @keywords dataset
#' @return interactome is a data.frame of 141296 rows and 2 columns. Each row indicates
#' an interaction of two gene entrez ids.
#' It was obtained from the reference below.
#' @examples
#' data(interactome)
#' @references Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease
#' relationships through the incomplete interactome[J]. Science, 2015,
#' 347(6224): 1257601.
NULL
#' graphlet_sig_hprd
#'
#' graphlet signature of nodes in HPRD PPI network.
#' @name graphlet_sig_hprd
#' @aliases graphlet_sig_hprd
#' @docType data
#' @keywords dataset
#' @return #' graphlet_sig_hprd is a matrix of 9270 rows and 73 rows. The rownames
#' of graphlet_sig_hprd are gene symbols of nodes from HPRD. Each row indicates a graphlet
#' signature of one node.
#' Graphlet signatures of nodes in HPRD PPI network were calculated
#' by ORCA tool, will be used in method Sun_topology.
#' @examples
#' data(graphlet_sig_hprd)
#' @references Hocevar T, Demsar J. A combinatorial approach to graphlet
#' counting[J]. Bioinformatics, 2014, 30(4): 559-565.
#' @seealso \code{\link{Sun_topology}}
NULL
#' orbit_dependency_count
#'
#' orbit dependency count
#' @name orbit_dependency_count
#' @aliases orbit_dependency_count
#' @docType data
#' @keywords dataset
#' @return orbit_dependency_count is a 73-dim vector, indicating 73 orbits'
#' dependency count in graphlet theory, used to calculate weight factor in
#' method setWeight.
#' @examples
#' data(orbit_dependency_count)
#' @references Milenkovic T, Przulj N. Uncovering biological network function via
#' graphlet degree signatures[J]. Cancer informatics, 2008, 6: 257.
#' @seealso \code{\link{setWeight}}
NULL
#' weight
#'
#' weight factor
#' @name weight
#' @aliases weight
#' @docType data
#' @keywords dataset
#' @return weight is a 73-dim vector, indicating 73 orbits' weight factor, will be
#' used in method Sun_topology.
#' @examples
#' data(weight)
#' @references Sun K, Goncalves JP, Larminie C. Predicting disease associations
#' via biological network analysis[J]. BMC bioinformatics, 2014, 15(1): 304.
#' @seealso \code{\link{setWeight}}, \code{\link{Sun_topology}}
NULL
#' d2s_hsdn
#'
#' diseases, symptoms and their co-occurrences in PubMed
#' @name d2s_hsdn
#' @aliases d2s_hsdn
#' @docType data
#' @keywords dataset
#' @return d2s_hsdn is a data.frame of 73726 rows and 3 columns, contains PubMed
#' co-occurrences of diseases and symptoms, will be used in method CosineDFV.
#' @examples
#' data(d2s_hsdn)
#' @references Zhou X Z, Menche J, Barabasi A L, et al. Human symptoms-disease
#' network[J]. Nature communications, 2014, 5.
#' @seealso \code{\link{CosineDFV}}
NULL
#' d2s_hsdn_sample
#'
#' a sample of d2s_hsdn
#' @name d2s_hsdn_sample
#' @aliases d2s_hsdn_sample
#' @docType data
#' @keywords dataset
#' @return d2s_hsdn__sample is a data.frame of 1480 rows and 3 columns, contains PubMed co-
#' occurrences of diseases and symptoms. It is a sample of d2s_hsdn.
#' @examples
#' data(d2s_hsdn_sample)
#' @references Zhou X Z, Menche J, Barabasi A L, et al. Human symptoms-disease
#' network[J]. Nature communications, 2014, 5.
#' @seealso \code{\link{d2s_hsdn}}, \code{\link{CosineDFV}}
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.