Description Usage Arguments Value Author(s) References See Also Examples
convert HumanNet normalized log-likelihood score from data.frame to list, which will be used in FunSim method
1 | LLSn2List(LLSn)
|
LLSn |
data.frame of gene-gene normalized log-likelihood score in HumanNet |
a list of normalized log-likelihood score
Peng Ni, Min Li
Cheng L, Li J, Ju P, et al. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association[J]. PloS one, 2014, 9(6): e99415.
1 2 3 4 | ## see examples in function FunSim
data(HumanNet_sample)
llsnlist<-LLSn2List(HumanNet_sample[1:100,])
llsnlist
|
Loading required package: igraph
Attaching package: 'igraph'
The following objects are masked from 'package:stats':
decompose, spectrum
The following object is masked from 'package:base':
union
$`10755`
4646
0.9500702
$`4175`
55388 4176 51053
0.9258415 0.8600542 0.8220114
$`207`
5170 3480 2309 7046
0.9020164 0.8225438 0.7928080 0.7757723
$`4292`
5395 4436 4437 9156 5378 54802
0.8919834 0.8350411 0.8318869 0.7694810 0.7565174 0.7555089
$`3614`
3615 8833 4839 55131 64794
0.8862736 0.8428776 0.8017585 0.7944462 0.7698911
$`3845`
5605 5604 5594 673 1956
0.8845156 0.8816185 0.8747013 0.8628220 0.8389933
$`6206`
6210 9045 6233 6228 6207 6230 6218 9349
0.8811791 0.8782109 0.8613759 0.8597318 0.8591496 0.8514737 0.8396623 0.8230757
6231 6227 6223 6229 7311 6234 6224 6217
0.8064044 0.7840032 0.7835836 0.7821113 0.7809096 0.7801854 0.7716179 0.7674980
6208
0.7588320
$`1956`
2885 868 55327 3845 8573 321 2002
0.8811789 0.8605607 0.8435167 0.8389933 0.8225438 0.8225438 0.8225438
$`4436`
4437 5395 9156 5111 6117 4292
0.8798991 0.8530540 0.8482553 0.8332843 0.8287356 0.8350411
$`1630`
9423 219699
0.8695297 0.8388120
$`2065`
3084
0.85506
$`57096`
6103
0.8527287
$`4089`
4093 4090 658 92 7046 653 4087
0.8505702 0.8338044 0.8189088 0.7757723 0.7714445 0.7583792 0.8298381
$`3364`
5884
0.8474567
$`3480`
5728 8856 7376 7046 5290 207
0.8448986 0.8225438 0.8225438 0.8225438 0.8225438 0.8225438
$`355`
8772 356
0.8439580 0.7733132
$`80155`
8260
0.835611
$`4087`
4089
0.8298381
$`857`
858
0.8259293
$`5879`
63916 7204
0.8225438 0.7906668
$`26271`
991
0.819102
$`1869`
983 7027
0.8161709 0.7953175
$`3481`
3488
0.8060364
$`11200`
25842
0.8044691
$`1535`
4688 4689
0.7953668 0.7759786
$`5054`
5328 7448
0.7948348 0.7530541
$`1025`
904
0.7820505
$`2252`
2255
0.7798692
$`3756`
51384 473
0.7757723 0.7757723
$`2064`
2886
0.7755482
$`581`
637 598
0.7750670 0.7531713
$`5894`
7529 5906
0.7741392 0.7570881
$`6310`
6311
0.7707042
$`11065`
983
0.7645746
$`1026`
1647 8900
0.7616913 0.7554571
$`2260`
2885 8822
0.7547656 0.7532358
$`1027`
8900
0.7502851
$`4646`
10755
0.9500702
$`55388`
4175
0.9258415
$`5170`
207
0.9020164
$`5395`
4292 4436
0.8919834 0.8530540
$`3615`
3614
0.8862736
$`5605`
3845
0.8845156
$`5604`
3845
0.8816185
$`6210`
6206
0.8811791
$`2885`
1956 2260
0.8811789 0.7547656
$`4437`
4436 4292
0.8798991 0.8318869
$`9045`
6206
0.8782109
$`5594`
3845
0.8747013
$`9423`
1630
0.8695297
$`673`
3845
0.862822
$`6233`
6206
0.8613759
$`868`
1956
0.8605607
$`4176`
4175
0.8600542
$`6228`
6206
0.8597318
$`6207`
6206
0.8591496
$`3084`
2065
0.85506
$`6103`
57096
0.8527287
$`6230`
6206
0.8514737
$`4093`
4089
0.8505702
$`9156`
4436 4292
0.8482553 0.7694810
$`5884`
3364
0.8474567
$`5728`
3480
0.8448986
$`8772`
355
0.843958
$`55327`
1956
0.8435167
$`8833`
3614
0.8428776
$`6218`
6206
0.8396623
$`219699`
1630
0.838812
$`8260`
80155
0.835611
$`4090`
4089
0.8338044
$`5111`
4436
0.8332843
$`6117`
4436
0.8287356
$`858`
857
0.8259293
$`9349`
6206
0.8230757
$`63916`
5879
0.8225438
$`8856`
3480
0.8225438
$`7376`
3480
0.8225438
$`7046`
3480 207 4089
0.8225438 0.7757723 0.7714445
$`5290`
3480
0.8225438
$`8573`
1956
0.8225438
$`321`
1956
0.8225438
$`2002`
1956
0.8225438
$`51053`
4175
0.8220114
$`991`
26271
0.819102
$`658`
4089
0.8189088
$`983`
1869 11065
0.8161709 0.7645746
$`6231`
6206
0.8064044
$`3488`
3481
0.8060364
$`25842`
11200
0.8044691
$`4839`
3614
0.8017585
$`4688`
1535
0.7953668
$`7027`
1869
0.7953175
$`5328`
5054
0.7948348
$`55131`
3614
0.7944462
$`2309`
207
0.792808
$`7204`
5879
0.7906668
$`6227`
6206
0.7840032
$`6223`
6206
0.7835836
$`6229`
6206
0.7821113
$`904`
1025
0.7820505
$`7311`
6206
0.7809096
$`6234`
6206
0.7801854
$`2255`
2252
0.7798692
$`4689`
1535
0.7759786
$`92`
4089
0.7757723
$`51384`
3756
0.7757723
$`473`
3756
0.7757723
$`2886`
2064
0.7755482
$`637`
581
0.775067
$`7529`
5894
0.7741392
$`356`
355
0.7733132
$`6224`
6206
0.7716179
$`6311`
6310
0.7707042
$`64794`
3614
0.7698911
$`6217`
6206
0.767498
$`1647`
1026
0.7616913
$`6208`
6206
0.758832
$`653`
4089
0.7583792
$`5906`
5894
0.7570881
$`5378`
4292
0.7565174
$`54802`
4292
0.7555089
$`8900`
1026 1027
0.7554571 0.7502851
$`8822`
2260
0.7532358
$`598`
581
0.7531713
$`7448`
5054
0.7530541
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.