Nothing
preProcRepeatedPeakData <-
function(rawData,no.peaks,no.replicates,threshold) {
# get the sample tags for samples with disparate replicates
TOTAL_COUNT = checkNo.replicates(rawData,no.peaks,no.replicates)
TOTAL_COUNT1 = NULL
RepCounts = NULL
for(i in 1:length(TOTAL_COUNT)) {
if((length(rawData[rawData$SampleTag ==TOTAL_COUNT[i],]$Intensity)/no.peaks) ==1)
TOTAL_COUNT1=c(TOTAL_COUNT1,TOTAL_COUNT[i])
}
# remove samples that are not replicated
NewRawData=rawData[!(rawData$SampleTag %in% TOTAL_COUNT1),]
## sift through the remaining data to obtain duplicates that are highly correlated among replicates
NewRawDataTags=unique(as.character(NewRawData$SampleTag))
#NewRawDataTags=unique(NewRawData$SampleTag)
NEWJUNK_DATA=NULL
for(i in 1:length(NewRawDataTags)) {
COLUMNS=dim(NewRawData[NewRawData$SampleTag == NewRawDataTags[i],])[1]/no.peaks
TempPeakData=NewRawData[NewRawData$SampleTag == NewRawDataTags[i],]$Intensity
TempPeakData<-negativeIntensitiesCorrection(TempPeakData) #transform data for logs to be defined
DataMat=data.frame(matrix(log2(TempPeakData),no.peaks,COLUMNS))
Mat=DataMat
PAIRS_SELECTED=sort(mostSimilarTwo(Mat))
JUNK_DATA = NewRawData[NewRawData$SampleTag == NewRawDataTags[i],]
JUNK_DATA = data.frame(JUNK_DATA,Index=c(rep(1:COLUMNS,each=no.peaks)))
JUNK_DATA = JUNK_DATA[JUNK_DATA$Index %in% PAIRS_SELECTED,]
JUNK_DATA = JUNK_DATA[,-dim(JUNK_DATA)[2]]
#JUNK_DATA
NEWJUNK_DATA = rbind(NEWJUNK_DATA,JUNK_DATA)
}
NewRawData1=NEWJUNK_DATA
NewRawData1
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.