Nothing
context("Convertion to the graph.")
testdata <- data.frame(competing = c("TP53", "Gene2", "ABCC1", "Gene4", "Gene4", "Gene5", "PTEN"),
miRNA = c("mir1", "mir1","hsa-mir3", "mir1", "MiR2", "MiR2", "miR4"),
Competing_expression = c(10000, 10000, 5000, 10000, 10000, 5000, 10000),
miRNA_expression = c(1000, 1000, 1000, 1000, 2000, 2000, 2000),
stringsAsFactors = FALSE)
testdata2 <- data.frame(competing = c("TP53", "Gene-2", "ABCC1", "Gene 4", "Gene 4", "Gene5", "PTEN"),
miRNA = c("mir1", "mir1","hsa-mir3", "mir1", "MiR2", "MiR2", "miR4"),
Competing_expression = c(10000, 10000, 5000, 10000, 10000, 5000, 10000),
miRNA_expression = c(1000, 1000, 1000, 1000, 2000, 2000, 2000),
stringsAsFactors = FALSE)
testdata3 <- data.frame(competing = c("TP53", "Gene-2", "ABCC1", "Gene 4", "Gene 4", "Gene5", "PTEN"),
miRNA = c("mir1", "mir1","hsa-mir3", "mir1", "MiR2", "MiR2", "miR4"),
Competing_expression = c(NA, 10000, 5000, 10000, 10000, 5000, 10000),
miRNA_expression = c(1000, 1000, 1000, 1000, 2000, 2000, 2000),
stringsAsFactors = FALSE)
test_that("Can dataset be correctly converted to graph ? ", {
prime_type_1 <- (priming_graph(testdata, competing_count = Competing_expression, miRNA_count= miRNA_expression)%>%
tidygraph::activate(nodes)%>%
as_tibble()%>%
filter(type == "miRNA")%>%
count())%>%
pull()
prime_type_2 <-priming_graph(testdata, competing_count = Competing_expression, miRNA_count= miRNA_expression)%>%
tidygraph::activate(nodes)%>%
as_tibble()%>%
filter(type == "Competing")%>%
count()%>%
pull()
prime_type_3 <- (priming_graph(testdata2, competing_count = Competing_expression, miRNA_count= miRNA_expression)%>%
tidygraph::activate(nodes)%>%
as_tibble()%>%
filter(type == "miRNA")%>%
count())%>%
pull()
prime_type_4 <-priming_graph(testdata2, competing_count = Competing_expression, miRNA_count= miRNA_expression)%>%
tidygraph::activate(nodes)%>%
as_tibble()%>%
filter(type == "Competing")%>%
count()%>%
pull()
expect_equal(prime_type_1 , prime_type_3)
expect_equal(prime_type_2, prime_type_4)
})
test_that("Is there any missing value that is caused by calculations in graph?", {
sum(is.na.data.frame(priming_graph(testdata, competing_count = Competing_expression, miRNA_count= miRNA_expression)%>%
as_tibble()))->missings1
sum(is.na.data.frame(priming_graph(testdata, competing_count = Competing_expression, miRNA_count= miRNA_expression)%>%
tidygraph::activate(nodes)%>%
as_tibble()))->missings2
expect_equal(missings1, missings2)
}
)
test_that("When missing value is found in dataframe", {
expect_warning(priming_graph(testdata3, competing_count = Competing_expression, miRNA_count= miRNA_expression), "Dataframe includes 1 NA values. Dataframe will be processed after NA removing. ")
}
)
test_that("Simulation on the sample network", {
data("minsamp")
data("new_counts")
minsamp %>%
priming_graph(competing_count = Competing_expression,
miRNA_count = miRNA_expression,
aff_factor = c(energy, seed_type),
deg_factor = region) %>%
update_variables(current_counts = new_counts) %>%
vis_graph()->initialsim_res
minsamp %>%
priming_graph(competing_count = Competing_expression,
miRNA_count = miRNA_expression,
aff_factor = c(energy, seed_type),
deg_factor = region) %>%
update_variables(current_counts = new_counts) %>%
simulate(3) %>%
vis_graph(title = "Minsamp Graph After 3 Iteration")->sim_res
minsamp %>%
priming_graph(competing_count = Competing_expression,
miRNA_count = miRNA_expression,
aff_factor = c(energy, seed_type),
deg_factor = region) %>%
update_how("Gene2", how = 3) %>%
simulate_vis(3, title = "Minsamp Graph After Each Iteration")%>%
as_tibble()%>%
filter(count_current == initial_count)%>%
select(name)%>%
pull()-> test_sim
expect_equal(initialsim_res[["data"]][["initial_count"]], initialsim_res[["data"]][["count_pre"]], initialsim_res[["data"]][["count_current"]])
expect_equal(sim_res[["layers"]][[2]][["aes_params"]][["shape"]], 16)
expect_equal(test_sim, c("Mir1", "Mir2"))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.