Nothing
createSummarizedMatrix <- structure(function
###This function creates summarized matrix of values of certain type.
##title<<Summarized value matrix.
(b,##<<List of beadLevelData objects (or single object).
spotsToProcess=NULL,##<<NULL for processing all spots in b. Otherwise specifies logical vector of the length equals to the number of arrays in b.
quality="qua",##<<Quality to matrize.
channelInclude="bgf",##<<This field allows user to set channel with weights which have to be from {0,1}.
##All zero weighted items are excluded from summarization.
##You can turn this off by setting this NULL. This option may be used together with bacgroundCorrect method or/and with beadarray QC (defaults to "bgf").
annotationTag=NULL##<< Tag from annotation file which to use in resulting matrix as colname.
)
{
waslist = checkIntegrity(b, "warn")
if(!waslist)
{
b = list(b)
if(!is.null(spotsToProcess))
{
spotsToProcess = list(spotsToProcess)
}
}
checkIntegrityOfListOfBeadLevelDataObjects(b, "warn")
channelExistsIntegrityWithLogicalVectorList(b, spotsToProcess, quality, "error")
if(!is.null(channelInclude))
{
channelExistsIntegrityWithLogicalVectorList(b, spotsToProcess, channelInclude, "error")
}
output = NULL
for(i in 1:length(b))
{
iteratorSet = 1:nrow(b[[i]])
if(!is.null(spotsToProcess))
{
iteratorSet = iteratorSet[spotsToProcess[[i]]];
}
for(j in iteratorSet)
{
if(is.null(channelInclude))
{
setToPreprocess = b[[i]][[j]][,c("ProbeID", quality)]
}else
{
setToPreprocess = b[[i]][[j]][b[[i]][[j]][,channelInclude]==1,c("ProbeID", quality)]
}
res = aggregateAndPreprocess(setToPreprocess, quality, NULL)[,c("ProbeID","mean")]
if(is.null(annotationTag))
{
colnames(res)[2] = as.character(b[[i]]@sectionData$SampleGroup[j,])
}else
{
pdata = pData(b[[i]]@experimentData$phenoData)
colnames(res)[2] = pdata[j, annotationTag]
}
if(is.null(output))
{
output = res;
}else
{
output = merge(output, res, by="ProbeID")
}
}
}
return(output)
}, ex=function()
{
if(require("blimaTestingData") && require("illuminaHumanv4.db") && interactive())
{
#Create summarization of nonnormalized data from GrnF column.
data(blimatesting)
blimatesting = bacgroundCorrect(blimatesting, channelBackgroundFilter="bgf")
blimatesting = nonPositiveCorrect(blimatesting, channelCorrect="GrnF", channelBackgroundFilter="bgf", channelAndVector="bgf")
#Prepare logical vectors corresponding to conditions A(groups1Mod), E(groups2Mod) and both(processingMod).
nonnormalized = createSummarizedMatrix(blimatesting, quality="GrnF", channelInclude="bgf",
annotationTag="Name")
head(nonnormalized)
}else
{
print("To run this example, please install blimaTestingData package from bioconductor by running BiocManager::install('blimaTestingData').");
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.