Description Usage Arguments Author(s) See Also Examples
View source: R/plot.convergence.R
Plots the log likelihood along MCMC sampling.
1 | plotConvergence(res, nburnin=NULL, title="")
|
res |
The result from birta.run (a list). |
nburnin |
Number of iterations used for the burn in. |
title |
Optional title of the plot. |
Benedikt Zacher zacher@lmb.uni-muenchen.de
1 2 3 4 5 6 7 8 9 10 11 12 | data(humanSim)
data(humanSim)
design = model.matrix(~0+factor(c(rep("control", 5), rep("treated", 5))))
colnames(design) = c("control", "treated")
contrasts = "treated - control"
limmamRNA = limmaAnalysis(sim$dat.mRNA, design, contrasts)
limmamiRNA = limmaAnalysis(sim$dat.miRNA, design, contrasts)
sim_result = birta(sim$dat.mRNA, sim$dat.miRNA, limmamRNA=limmamRNA,
limmamiRNA=limmamiRNA, nrep=c(5,5,5,5), genesets=genesets,
model="all-plug-in", niter=50000, nburnin=10000,
sample.weights=FALSE, potential_swaps=potential_swaps)
plotConvergence(sim_result, nburnin=10000, title="simulation")
|
Loading required package: limma
Loading required package: MASS
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following object is masked from 'package:limma':
plotMA
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, cbind, colMeans, colSums, colnames, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
setdiff, sort, table, tapply, union, unique, unsplit, which,
which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Formatting regulator-target network -> checking overlap between network and measurements.
30 DE gene(s) have 69 regulating TFs and 328 regulating miRNAs
BIRTA
Data and network: #mRNAs = 1000 #miRNAs = 553 #TFs = 156 only one weight per regulator = TRUE
Prior parameters: theta_TF = 0.2211538 theta_miRNA = 0.2965642 lambda = 0
Hyperparameters: alpha = 1.101457 beta = 0.9927876 n0 = 1
MCMC parameters: burnin = 10000 niter = 50000 thin = 50 condition specific inference = TRUE
sampling ...
No edge weight adjustment!
finished.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.