Nothing
illuminaOutlierMethod= function(inten, probeList,wts=1,n=3)
{
probes = sort(unique(probeList[probeList > 0]))
nasinf = is.na(inten) | !is.finite(inten) | (wts==0)
inten = inten[!nasinf]
probeList = probeList[!nasinf]
nbeads = length(inten)
start = 0
foo <- .C("findAllOutliers", as.double(inten), binStatus = integer(length = nbeads),
as.integer(probeList), as.integer(probes), as.integer(length(probes)),
as.integer(nbeads), as.integer(start), as.double(n),
PACKAGE = "beadarray")
sel = which((probeList > 0) & (foo$binStatus == 0))
which(!nasinf)[sel]
}
weightsOutlierMethod= function(inten, probeList,wts,n=3)
{
probes = sort(unique(probeList[probeList > 0]))
which(wts==0)
}
noOutlierMethod= function(inten, probeList,wts=1,n=3)
{
integer(0)
}
squeezedVarOutlierMethod<-function (inten, probeList, wts=1, n=3, predictNlim=14){
# remove na values, infinite values, and non-decoded beads
nasinf = is.na(inten) | !is.finite(inten) | (probeList==0) | (wts==0)
inten = inten[!nasinf]
probeList = probeList[!nasinf]
# get initial bead-summary data
mysplit<-split(inten,probeList)
getmeans<-sapply(mysplit,mean,na.rm=T)
getvars<-sapply(mysplit,var,na.rm=T)
getN<-sapply(mysplit,length)
# ensure that we don't extrapolate beyond values based on a decent number of beads
usemeans<-getmeans
usemeans<-pmax(usemeans,min(getmeans[getN>predictNlim]))
usemeans<-pmin(usemeans,max(getmeans[getN>predictNlim]))
# model variance in terms of mean
myloess<-loess(I(1/getvars[getN>predictNlim])~getmeans[getN>predictNlim])
newvars<-predict(myloess,usemeans)
# model squared error of variance in terms of mean
myloess2<-loess(I((1/getvars[getN>predictNlim]-newvars[getN>predictNlim])^2)~getmeans[getN>predictNlim])
newvars2<-predict(myloess2,usemeans)
# express priors in terms of precision rather than variance
s0<-1/newvars
d0<-2*newvars*newvars/newvars2
# estimate posterior variance for bead-types
shat<-(d0*s0+getN*getvars)/(d0+getN)
# construct bead-summary mean and sd for each bead
lsd<-sqrt(shat[match(probeList,unique(probeList))])
lmeans<-usemeans[match(probeList,unique(probeList))]
# generate list of outliers
sel = which(abs((inten-lmeans)/lsd)>n)
which(!nasinf)[sel]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.