R/getLikelihoods.NB.R

Defines functions `getLikelihoods.NB`

# modification on git from copied files
`getLikelihoods.NB` <-
function(cD, prs, pET = "BIC", marginalise = FALSE, subset = NULL, priorSubset = NULL, bootStraps = 1, conv = 1e-4, nullData = FALSE, returnAll = FALSE, returnPD = FALSE, verbose = TRUE, discardSampling = FALSE, cl = NULL, ...)
  {
    warning("This function is deprecated; using 'getLikelihoods' instead.")
    if(!missing(prs)) return(getLikelihoods(cD, prs = prs, pET = pET, marginalise = marginalise, subset = subset, priorSubset = priorSubset, bootStraps = bootStraps, conv = conv, nullData = nullData, returnAll = returnAll, returnPD = returnPD, verbose = verbose, discardSampling = discardSampling, cl = cl, ...)) else return(getLikelihoods(cD, pET = pET, marginalise = marginalise, subset = subset, priorSubset = priorSubset, bootStraps = bootStraps, conv = conv, nullData = nullData, returnAll = returnAll, returnPD = returnPD, verbose = verbose, discardSampling = discardSampling, cl = cl, ...))

    stop("You shouldn't ever see this message.")
  }    
#    constructWeights <- function(withinCluster = FALSE, consensus = FALSE)
#      {
#        priorWeights <- lapply(1:length(numintSamp), function(ii)
#                               lapply(1:length(numintSamp[[ii]]), function(jj)
#                                      {                                      
#                                        samplings <- numintSamp[[ii]][[jj]]
#                                        samplings <- samplings[order(samplings[,2]),]
#                                        if(consensus) intervals <- findInterval(1:nrow(NBpriors) - 0.5, samplings[,2]) + 1 else intervals <- findInterval(1:nrow(NBpriors[[ii]][[jj]]) - 0.5, samplings[,2]) + 1
#                                        intlens <- diff(c(intervals, nrow(samplings) + 1))                                                                       
#                                        weights <- c()
#                                        weights[intlens == 1] <- samplings[intervals[intlens == 1],3]
#                                        if(any(intlens > 1))
#                                          weights[which(intlens > 1)] <- sapply(which(intlens > 1), function(kk)
#                                                                                sum(samplings[intervals[kk] + 0:(intlens[kk] - 1),3]))
#                                        weights
#                                      }))
#                                                                     
#        if(withinCluster) {
#          assign("priorWeights", priorWeights, envir = .GlobalEnv)
#          return(invisible(NULL))
#        } else return(priorWeights)
#      }
#    
#    NBbootStrap <- function(us, libsizes, groups, lensameFlag, consensus = FALSE, differentWeights = differentWeights) {
#      `logsum` <-
#        function(x)
#          max(x, max(x, na.rm = TRUE) + log(sum(exp(x - max(x, na.rm = TRUE)), na.rm = TRUE)), na.rm = TRUE)
#
#
#      PDgivenr.NBConsensus <- function (number, cts, seglen, libsizes, priors, groups, priorWeights, numintSamp, differentWeights)
#        {
#          dnbinoms <- matrix(
#                             dnbinom(rep(cts, each = nrow(priors)),
#                                     size = 1 / priors[,2],
#                                     mu = rep(libsizes * seglen, each = nrow(priors)) * priors[,1]
#                                     , log = TRUE),
#                             ncol = length(cts))
#
#          if(differentWeights)
#            {
#              ld <- sapply(1:length(groups), function(grpnum) {
#                group <- groups[[grpnum]]
#                wts <- priorWeights[[grpnum]]
#                sampInfo <- numintSamp[[grpnum]]
#                sum(sapply(1:length(levels(group)), function(gg) {
#                  selcts <- group == levels(group)[gg] & !is.na(group)
#                  weightings <- wts[[gg]]
#                  nzWts <- weightings != 0
#                  wsInfo <- which(sampInfo[[gg]][,1] == number)
#                  weightings[sampInfo[[gg]][wsInfo,2]] <- weightings[sampInfo[[gg]][wsInfo,2]] - sampInfo[[gg]][wsInfo,3]
#                  logsum(rowSums(dnbinoms[nzWts,selcts,drop = FALSE], na.rm = TRUE) + log(weightings[nzWts])) - log(sum(weightings[nzWts]))
#                }))
#              })
#            } else {
#              weightings <- priorWeights[[1]][[1]]
#              wsInfo <- which(numintSamp[[1]][[1]][,1] == number)
#              weightings[numintSamp[[1]][[1]][wsInfo,2]] <- weightings[numintSamp[[1]][[1]][wsInfo,2]] - numintSamp[[1]][[1]][wsInfo,3]
#              nzWts <- weightings != 0            
#              dnbinoms <- dnbinoms[nzWts,,drop = FALSE]
#              lweight <- log(weightings[nzWts])
#              lsumweight <- log(sum(weightings[nzWts]))
#              
#              ld <- sapply(1:length(groups), function(grpnum) {
#                group <- groups[[grpnum]]
#                sum(sapply(1:length(levels(group)), function(gg) {
#                  selcts <- which(group == levels(group)[gg] & !is.na(group))
#                  logsum(rowSums(dnbinoms[,selcts,drop = FALSE], na.rm = TRUE) + lweight) - lsumweight
#                })) 
#              })
#              
#            }
#          ld
#        }
#      
#      PDgivenr.NB <- function (number, cts, seglen, libsizes, priors, group, wts, sampInfo, differentWeights)
#        {
#          if(length(seglen) == 1 & length(cts) > 1)
#            seglen <- rep(seglen, length(cts))
#          
#          sum(
#              sapply(1:length(levels(group)), function(gg) {
#                selcts <- group == levels(group)[gg] & !is.na(group)
#                prior <- priors[[gg]]
#                weightings <- wts[[c(1, gg)[differentWeights + 1]]]
#                nzWts <- weightings != 0
#                wsInfo <- which(sampInfo[[c(1, gg)[differentWeights + 1]]][,1] == number)
#                weightings[sampInfo[[c(1, gg)[differentWeights + 1]]][wsInfo,2]] <- weightings[sampInfo[[c(1, gg)[differentWeights + 1]]][wsInfo,2]] - sampInfo[[c(1, gg)[differentWeights + 1]]][wsInfo,3]
#                
#                logsum(
#                  rowSums(
#                    matrix(
#                      dnbinom(rep(cts[selcts], each = sum(nzWts)),
#                              size = 1 / prior[nzWts,2],
#                              mu = rep(libsizes[selcts] * seglen[selcts], each = sum(nzWts)) * prior[nzWts,1]
#                              , log = TRUE),
#                      ncol = sum(selcts)), na.rm = TRUE) + log(weightings[nzWts])
#                  ) - log(sum(weightings[nzWts]))
#              })
#              )
#        }
#      
#      number <- us[1]
#      us <- us[-1]
#      if(lensameFlag)
#        {
#          cts <- us[-1]
#          seglen <- us[1]
#        } else {
#          cts <- us[-(1:(length(us) / 2))]
#          seglen <- us[1:(length(us) / 2)]
#        }
#
#      
#
#      if(consensus) {
#        PDgivenr.NBConsensus(number, cts, seglen = seglen, libsizes = libsizes, priors = NBpriors, groups = groups, priorWeights = priorWeights, numintSamp = numintSamp, differentWeights = differentWeights)
#      } else {      
#        sapply(1:length(NBpriors), function(gg)
#               PDgivenr.NB(number = number, cts = cts, seglen = seglen, libsizes = libsizes, priors = NBpriors[[gg]], group = groups[[gg]],
#                           wts = priorWeights[[c(1, gg)[differentWeights + 1]]],
#                           sampInfo = numintSamp[[c(1, gg)[differentWeights + 1]]],
#                           differentWeights = differentWeights)
#               )
#      }
#    }
#
#    if(!is.null(cl))
#      {
#        clustAssign <- function(object, name)
#          {
#            assign(name, object, envir = .GlobalEnv)
#            NULL
#          }
#        
#        getLikelihoodsEnv <- new.env(parent = .GlobalEnv)
#        environment(clustAssign) <- getLikelihoodsEnv
#        environment(NBbootStrap) <- getLikelihoodsEnv
#      }
#
#    
#    listPosts <- list()
#    
#    if(!inherits(cD, what = "countData"))
#      stop("variable 'cD' must be of or descend from class 'countData'")
#    
#    if(cD@priorType != "NB-QL" && cD@priorType != "NB") stop("Incorrect prior type for this method of likelihood estimation")
#    
#    if(pET %in% c("none", "iteratively"))
#      {
#        if(length(prs) != length(cD@groups)) stop("'prs' must be of same length as the number of groups in the 'cD' object")
#        if(any(prs < 0))
#          stop("Negative values in the 'prs' vector are not permitted")
#        if(!nullData & sum(prs) != 1)
#          stop("If 'nullData = FALSE' then the 'prs' vector should sum to 1.")
#        
#        if(nullData & sum(prs) >= 1)
#          stop("If 'nullData = TRUE' then the 'prs' vector should sum to less than 1.")
#        
#      } else if(pET %in% c("BIC"))
#        prs <- rep(NA, length(cD@groups))
#    
#    if(!(class(subset) == "integer" | class(subset) == "numeric" | is.null(subset)))
#      stop("'subset' must be integer, numeric, or NULL")
#    
#    if(is.null(subset)) subset <- 1:nrow(cD)
#
#    subset <- subset[rowSums(do.call("cbind", lapply(cD@groups, function(x) do.call("cbind", lapply(levels(x), function(rep) rowSums(is.na(cD@data[subset,which(x == rep),drop = FALSE])) == length(which(x == rep))))))) == 0]
#
#    if(is.null(priorSubset)) priorSubset <- subset
#    
#    if(is.null(conv)) conv <- 0
#    if(nrow(cD@seglens) > 0) seglens <- cD@seglens else seglens <- matrix(1, ncol = 1, nrow = nrow(cD@data))
#    if(ncol(seglens) == 1) lensameFlag <- TRUE else lensameFlag <- FALSE    
#
#    libsizes <- as.double(cD@libsizes)
#    groups <- cD@groups
#    NBpriors <- cD@priors$priors
#    numintSamp <- cD@priors$sampled
#    weights <- cD@priors$weights    
#
#    if(is.matrix(NBpriors)) consensus <- TRUE else consensus <- FALSE
#    
#    if(is.numeric(weights) & is.matrix(numintSamp) & bootStraps == 1 & !nullData)
#      {
#        differentWeights <- FALSE
#        numintSamp <- list(list(cbind(numintSamp, weights)))
#        priorWeights <- constructWeights(consensus = consensus)
#      } else {
#        differentWeights <- TRUE
#            
#        if(discardSampling) numintSamp[,1] <- NA    
#        if(is.matrix(numintSamp))
#          numintSamp <- lapply(groups, function(x) lapply(1:length(levels(x)), function(z) numintSamp))
#        if(is.null(numintSamp))
#          numintSamp <- lapply(groups, function(x) lapply(1:length(levels(x)), function(z) cbind(sampled = rep(-1, nrow(z)), representative = 1:nrow(z))))
#        
#        if(is.null(weights))
#          weights <- lapply(numintSamp, function(x) lapply(x, function(z) weights = rep(1, nrow(z))))
#        if(is.numeric(weights))
#          weights <- lapply(numintSamp, function(x) lapply(x, function(z) weights = weights))
#        
#        numintSamp <- lapply(1:length(numintSamp), function(ii) lapply(1:length(numintSamp[[ii]]), function(jj) cbind(numintSamp[[ii]][[jj]], weights = weights[[ii]][[jj]])))
#
#        priorWeights <- constructWeights(consensus = consensus)
#      }
#    
#    if(nullData)
#      {
#        ndelocGroup <- which(unlist(lapply(cD@groups, function(x) all(x[!is.na(x)] == x[!is.na(x)][1])))) 
#        if(length(ndelocGroup) == 0) stop("If 'nullData = TRUE' then there must exist some vector in groups whose members are all identical") else ndelocGroup <- ndelocGroup[1]
#        
#        NZLs <- NZLpriors <- NULL
#        
#        ndePriors <- log(NBpriors[[ndelocGroup]][[1]][,1])
#        weights <- priorWeights[[ndelocGroup]][[1]]
#        sep <- bimodalSep(ndePriors[ndePriors > -Inf], weights[ndePriors > -Inf], bQ = c(0, 0.5))
#        
#        groups <- c(groups, groups[ndelocGroup])
#        ndenulGroup <- length(groups)
#        prs <- c(prs, 1 - sum(prs))
#
#        NBpriors[[ndenulGroup]] <- NBpriors[[ndelocGroup]]
#        priorWeights[[ndenulGroup]] <- priorWeights[[ndelocGroup]]
#        priorWeights[[ndenulGroup]][[1]] <- priorWeights[[ndenulGroup]][[1]] * as.numeric(ndePriors <= sep)
#        priorWeights[[ndelocGroup]][[1]] <- priorWeights[[ndelocGroup]][[1]] * as.numeric(ndePriors > sep)
#        numintSamp[[ndenulGroup]] <- numintSamp[[ndelocGroup]]
#        numintSamp[[ndelocGroup]][[1]][numintSamp[[ndelocGroup]][[1]][,2] %in% which(ndePriors <= sep),3] <- 0
#        numintSamp[[ndenulGroup]][[1]][numintSamp[[ndenulGroup]][[1]][,2] %in% which(ndePriors > sep),3] <- 0
#      }
#
#    posteriors <- matrix(NA, ncol = length(groups), nrow = nrow(cD@data))
#    propest <- NULL
#    converged <- FALSE
#
#    if(!is.null(cl)) {
#      clusterCall(cl, clustAssign, NBpriors, "NBpriors")
#    }
#
#    if(verbose) message("Finding posterior likelihoods...", appendLF = FALSE)
#
#    priorReps <- unique(unlist(sapply(numintSamp, function(x) as.integer(unique(sapply(x, function(z) z[,1]))))))
#    priorReps <- priorReps[priorReps > 0 & !is.na(priorReps)]
#    
#    if(!all(priorReps %in% 1:nrow(cD@data)) & bootStraps > 1)
#      {
#        warning("Since the sampled values in the '@priors' slot are not available, bootstrapping is not possible.")
#        bootStraps <- 1
#      }
#
#    postRows <- unique(c(priorReps, priorSubset, subset))   
#    
#    .fastUniques <- function(x){
#      if (nrow(x) > 1) {
#        return(c(TRUE, rowSums(x[-1L, , drop = FALSE] == x[-nrow(x),, drop = FALSE]) != ncol(x)))
#      } else return(TRUE)
#    }    
#
#    if(length(priorReps) == 0 || !any(priorReps %in% postRows))
#      {
#        orddat <- do.call("order", c(lapply(1:ncol(seglens), function(ii) seglens[postRows,ii]), lapply(1:ncol(cD@data), function(ii) cD@data[postRows,ii])))
#        whunq <- .fastUniques(cbind(seglens[postRows,], cD@data[postRows,])[orddat,,drop = FALSE])
#        postRows <- postRows
#      } else whunq <- TRUE
#    
#    for(cc in 1:bootStraps)
#      {
#        if(cc > 1) numintSamp <- lapply(1:length(numintSamp), function(ii) lapply(1:length(numintSamp[[ii]]), function(jj) cbind(numintSamp[[ii]][[jj]][,1:2], weights = exp(posteriors[numintSamp[[ii]][[jj]][,1],ii]))))          
#        
#        if (is.null(cl)) {
#          if(cc > 1)
#            priorWeights <- constructWeights()
#
#          ps <- apply(cbind(1:nrow(cD@data), seglens, cD@data)[postRows[whunq],,drop = FALSE],
#                      1, NBbootStrap, libsizes = libsizes, groups = groups, lensameFlag = lensameFlag, consensus = consensus, differentWeights = differentWeights)
#        } else {
#          environment(constructWeights) <- getLikelihoodsEnv
#          clusterCall(cl, clustAssign, numintSamp, "numintSamp")
#          #clusterCall(cl, clustAssign, priorWeights, "priorWeights")
#          clusterCall(cl, constructWeights, withinCluster = TRUE, consensus = consensus)
#
#          ps <- parRapply(cl[1:min(length(cl), length(postRows[whunq]))], cbind(1:nrow(cD@data), seglens, cD@data)[postRows[whunq],, drop = FALSE],
#                          NBbootStrap, libsizes = libsizes, groups = groups, lensameFlag = lensameFlag, consensus = consensus, differentWeights = differentWeights)
#        }
#
#        ps <- matrix(ps, ncol = length(groups), byrow = TRUE)
#        rps <- matrix(NA, ncol = length(groups), nrow = nrow(cD@data))
#
#        rps[postRows[whunq],] <- ps
#
#        if(length(priorReps) == 0 || !any(priorReps %in% postRows))
#          {
#            rps[postRows[orddat],] <- rps[postRows[orddat[rep(which(whunq), diff(c(which(whunq), length(whunq) + 1)))]],]
#          }
#        
#
#        if(returnPD) {
#              if(verbose) message("done.")
#              return(rps)
#            }
#        
#        if(pET != "none")
#          {
#            restprs <- getPosteriors(rps[priorSubset,, drop = FALSE], prs, pET = pET, marginalise = FALSE, groups = groups, priorSubset = NULL, cl = cl)$priors
#          } else restprs <- prs
#        
#        pps <- getPosteriors(rps[union(priorReps,subset),,drop = FALSE], prs = restprs, pET = "none", marginalise = marginalise, groups = groups, priorSubset = NULL, cl = cl)
#
#        if(any(!is.na(posteriors)))
#          if(all(abs(exp(posteriors[union(priorReps,subset),,drop = FALSE]) - exp(pps$posteriors)) < conv)) converged <- TRUE
#        
#        posteriors[union(priorReps, subset),] <- pps$posteriors
#        
#        prs <- pps$priors
#        propest <- rbind(propest, prs)
#
##        estProps <- pps$priors
##        names(estProps) <- names(cD@groups)
#
#        cat(".")        
#
#        if(returnAll | converged | cc == bootStraps)
#          {
#            retPosts <- posteriors
#            retPosts[priorReps[!(priorReps %in% subset)],] <- NA
#            
#            nullPosts <- matrix(ncol = 0, nrow = 0)
#            if(nullData) {
#              nullPosts <- retPosts[,ndenulGroup,drop = FALSE]
#              retPosts <- retPosts[,-ndenulGroup, drop = FALSE]
#            }
#            estProps <- apply(exp(retPosts), 2, mean, na.rm = TRUE)
#            
#            colnames(retPosts) <- names(cD@groups)
#            listPosts[[cc]] <- (new(class(cD), cD, posteriors = retPosts, estProps = estProps, nullPosts = nullPosts))
#            listPosts[[cc]]@orderings <- makeOrderings(listPosts[[cc]])
#          }
#
#        if(converged)
#          break()
#      }
#
#    if(!is.null(cl))
#      clusterEvalQ(cl, rm(list = ls()))
#    
#    if(verbose) message("done.")
#
#    if(!returnAll) return(listPosts[[cc]]) else {
#      if(length(listPosts) == 1) return(listPosts[[1]]) else return(listPosts)
#    }
#    
#  }
#

Try the baySeq package in your browser

Any scripts or data that you put into this service are public.

baySeq documentation built on Nov. 8, 2020, 5:43 p.m.