Description Usage Arguments Details Value Author(s) References Examples
View source: R/findSynexprsStep.R
This function takes the modules that were inferred from the GSEA step using (findAttractors
) and finds a set of transcriptionally
coherent set of genes associated with a particular core attractor pathway, i.e. the synexpression groups.
1 | findSynexprs(myIDs, myDataSet, cellTypeTag, removeGenes = NULL, min.clustersize = 5, ...)
|
myIDs |
either a single character string or |
myDataSet |
|
cellTypeTag |
character string of the variable name which stores the cell-lineages or experimental groups of interest for the samples in the data set (this string should be one of the column names of pData(myEset)). |
removeGenes |
|
min.clustersize |
|
... |
additional arguments. |
This function performs a hierarichical cluster analysis of the genes in a core attractor pathway module, and uses an informativeness metric to determine the number of optimal clusters (syenxpression groups) that describe the data.
If a single KEGG or reactome ID is specified in pwayIds
, then a SynExpressionSet
object is returned.
If a multiple KEGG or reactome IDs are specified, then an environment object is returned where the keys are labeled "pwayIDsynexprs"
(e.g. for MAPK KEGGID = 04010, the key is pway04010synexprs). The value associated with each key is a SynExpressionSet
object.
Jessica Mar
Mar, J., C. Wells, and J. Quackenbush, Identifying the Gene Expression Modules that Represent the Drivers of Kauffman's Attractor Landscape. to appear, 2010.
1 2 3 4 5 6 7 | data(subset.loring.eset)
attractor.states <- findAttractors(subset.loring.eset, "celltype", annotation="illuminaHumanv1.db")
remove.these.genes <- removeFlatGenes(subset.loring.eset, "celltype", contrasts=NULL, limma.cutoff=0.05)
mapk.syn <- findSynexprs("04010", attractor.states, "celltype", remove.these.genes)
top5.syn <- findSynexprs(attractor.states@rankedPathways[1:5,1], attractor.states, "celltype", removeGenes=remove.these.genes)
vec.geneid <- c("GI_17999531-S","GI_17978503-A")
custom.syn <- findSynexprs(vec.geneid, subset.loring.eset, "celltype", removeGenes=remove.these.genes)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.