Nothing
# ------------------------------------------------------------------------------
#' @title MaxQuant evidence file to SAINTq format
#'
#' @description Converts the MaxQuant evidence file to the required files
#' by SAINTq. The user can choose to use either peptides with `spectral counts`
#' (use `msspc`) or the all the peptides (use `all`) for the analysis.
#' The quantitative can be also chosen (either MS Intensity or Spectral Counts)
#' @param evidence_file (char or data.frame) The evidence file path and name,
#' or data.frame
#' @param keys_file (char) Keys file with a SAINT column specifying
#' test (`T`) and control (`C`) conditions
#' @param output_dir (char) New directory to create and save files.
#' Default is current directory (recommended to provide a new folder name).
#' @param sc_option (char). Filter peptides with spectral counts only.
#' Two options:
#' - `msspc`: use only peptides with spectral_counts
#' - `all` (default): all peptides detected (including the one resulting from
#' the MaxQuant 'Match between run' algorithm)
#' @param quant_variable (char) Select the quantitative variable.
#' Two options available:
#' - `msint`: MS Intensity (default)
#' - `msspc`: MS.MS.count (Spectral Counts)
#' @param fractions (logical) `TRUE` for 2D proteomics (fractions).
#' Default: `FALSE`
#' @param verbose (logical) `TRUE` (default) shows function messages
#' @return The input files requires to run SAINTq
#' @details After running the script, the new specified folder should contain
#' the folling files:
#' - saintq-config-peptides
#' - saintq-config-proteins
#' - saintq_input_peptides.txt
#' - saintq_input_proteins.txt
#'
#' Then `cd` into the new folder and run either of the following two options
#' (assuming that `saintq` is installed in your linux/unix/mac os x system):
#'
#' `> saintq config-saintq-peptides`
#'
#' or
#'
#' `> saintq config-saintq-proteins`
#' @keywords SAINT, SAINTq, APMS
#' @examples
#' # Testing that the files cannot be empty
#' artmsEvidenceToSAINTq (evidence_file = NULL,
#' keys_file = NULL,
#' output_dir = NULL)
#' @export
artmsEvidenceToSAINTq <- function(evidence_file,
keys_file,
output_dir = "artms_saintq",
sc_option = c("all", "msspc"),
fractions = FALSE,
quant_variable = c('msint','msspc'),
verbose = TRUE){
Sequence = NULL
if(verbose){
message(">> GENERATING A SAINTq INPUT FILE ")
message(">> CHECKING THE keys FILE FIRST ")
}
if(is.null(evidence_file) & is.null(keys_file) & is.null(output_dir)){
return("The evidence_file, keys_file and output_dir must not be NULL")
}
if(any(missing(evidence_file) | missing(keys_file)))
stop("Missed (one or many) required argument(s)
Please, check the help of this function to find out more")
keys <- .artms_checkIfFile(keys_file)
keys <- .artms_checkRawFileColumnName(keys)
if(fractions){
if(verbose) message("--- VERIFYING THAT THE INFORMATION ABOUT fractions IS AVAILABLE ")
requiredColumns <- c('RawFile','IsotopeLabelType','Condition',
'BioReplicate','Run',
'FractionKey', 'SAINT')
if(any(! requiredColumns %in% colnames(keys)))
stop('Column names in keys not conform to schema. Required columns:',
sprintf('\t%s\n',requiredColumns))
}else{
requiredColumns <- c('RawFile','IsotopeLabelType','Condition',
'BioReplicate','Run', 'SAINT')
if(any(! requiredColumns %in% colnames(keys)))
stop('Column names in keys not conform to schema. Required columns:',
sprintf('\t%s\n', requiredColumns))
}
# EVIDENCE:
datamerged <- artmsMergeEvidenceAndKeys(evidence_file,
keys_file,
verbose = verbose)
# SELECTING THE Leading.razor.protein
datamerged <- subset(datamerged, select = -Proteins)
if( ('Leading.razor.protein' %in% colnames(datamerged)) ) {
if(verbose) message('--- Making the <Leading.Razor.Protein> the <Proteins> column ')
names(datamerged)[grep('Leading.razor.protein',
names(datamerged))] <- 'Proteins'
} else if('Leading.Razor.Protein' %in% colnames(datamerged) ) {
if(verbose) message('--- Making the <Leading.Razor.Protein> the <Proteins> column ')
names(datamerged)[grep('Leading.Razor.Protein', names(datamerged))] <-
'Proteins'
} else{
stop("there is no <leading.razor.protein> column in this evidence file.")
}
datamerged$Proteins <- gsub("(sp\\|)(.*)(\\|.*)", "\\2", datamerged$Proteins )
## ONLY VALUES WITH SPECTRAL COUNTS
sc_option <- match.arg(sc_option)
if(sc_option == "msspc"){
if(verbose) message("--- Selecting peptides with spectral count only ")
before <- dim(datamerged)[1]
datamerged <- datamerged[which(datamerged$MS.MS.Count > 0),]
after <- dim(datamerged)[1]
keepingPercent <- (after*100)/before
if(verbose){
message("\t+--> Before:", before," ")
message("\t+--> After:", after," (Keeping:", keepingPercent,"%) ")
}
}else if(sc_option == "all"){
if(verbose)
message("--- ALL peptides with intensities will be used to generate the
saintq input file (indepependently of the number of spectral counts ")
}else{stop("<sc_option> argument must be either 'sc' or 'all'")
}
# Remove empty proteins
if(verbose) message("--- Removing empty protein ids (if any) ")
if(length(which(datamerged$Proteins==""))>0){
datamerged <- datamerged[-which(datamerged$Proteins==""),]
}
# Remove protein groups
if(verbose) message("--- Removing Protein Groups (if any) ")
datamerged <- .artms_removeMaxQProteinGroups(datamerged)
# Removing Contaminants
if(verbose) message("--- Removing contaminants")
data_f2 <- artmsFilterEvidenceContaminants(datamerged,
verbose = verbose)
quant_variable <- match.arg(quant_variable)
if(quant_variable == "msint"){
# Set the intensity as numeric to avoid overflow problems
data_f2$Intensity = as.numeric(data_f2$Intensity)
data_f2 <- data_f2[!is.na(data_f2$Intensity),]
}else if(quant_variable == "msspc"){
# hack to use spectral counts instead of intensities
data_f2$Intensity <- NA
data_f2$Intensity <- data_f2$MS.MS.Count
data_f2$Intensity = as.numeric(data_f2$Intensity)
data_f2 <- data_f2[!is.na(data_f2$Intensity),]
}
# create output directory if it doesn't exist
if (!dir.exists(output_dir)) {
dir.create(output_dir, recursive = TRUE)
}
# Combine all the fractions if this is a fractioning experiment by
# summing them up
if (fractions){
# Sum up all the fractions first
data_f2_fa <- aggregate(
Intensity~Sequence+Proteins+Condition+BioReplicate+Run,
data=data_f2,
FUN = sum)
}else{
data_f2_fa <- data_f2
}
# Take only unique values of both sequences and proteins.
data_f2uniques <- unique(data_f2_fa[,c("Proteins", "Sequence")])
protPep <- aggregate(Sequence ~ Proteins,
data_f2uniques,
FUN = paste, collapse="|" )
# Using Intensities for both Peptides and Proteins
##LEGACY
# protBiorepIntensity <- data.table::dcast(data=data_f2_fa[,c("Proteins","BioReplicate","Intensity")],
# Proteins~BioReplicate,
# value.var = "Intensity", sum, na.rm = TRUE, fill=0 )
protBiorepIntensity <- data_f2_fa[,c("Proteins","BioReplicate","Intensity")] %>%
tidyr::pivot_wider(id_cols = c(Proteins, BioReplicate),
names_from = BioReplicate,
values_from = Intensity,
values_fn = list(Intensity = sum),
values_fill = list(Intensity = 0))
protBiorepIntensity[is.na(protBiorepIntensity)] <- 0
##LEGACY
# peptideBiorepIntensity <- data.table::dcast(
# data=data_f2_fa[,c("Proteins","Sequence","BioReplicate","Intensity")],
# Proteins+Sequence~BioReplicate,
# value.var = "Intensity", fun.aggregate = sum, na.rm = TRUE, fill=0 )
peptideBiorepIntensity <- data_f2_fa[,c("Proteins", "Sequence", "BioReplicate","Intensity")] %>%
tidyr::pivot_wider(id_cols = c(Proteins, Sequence),
names_from = BioReplicate,
values_from = Intensity,
values_fn = list(Intensity = sum),
values_fill = list(Intensity = 0))
peptideBiorepIntensity[is.na(peptideBiorepIntensity)] <- 0
# PROTEINS: extra step to add the information about peptides
almost <- merge(protBiorepIntensity, protPep, by="Proteins")
final_result <- almost[,c(1,dim(almost)[2],2:(dim(almost)[2]-1)) ]
# SAINTQ HEADER (two extra rows on top)
rekey <- keys[keys$BioReplicate %in% data_f2_fa$BioReplicate,]
if(fractions){
rekey <- rekey[c('Condition', 'BioReplicate', 'SAINT')]
rekey <- unique(rekey)
}
x <- t(rekey[,c('SAINT','Condition','BioReplicate')])
extra <- cbind(c('','','Proteins'),c('','','Sequence'))
header <- t(cbind(extra, x))
theader <- t(header)
checkthis <- data.frame(theader, row.names = NULL, stringsAsFactors = FALSE)
names(checkthis) = checkthis[3,]
# PROTEINS: ADDING HEADER, merging based on row names
proteinssaintqheader <- rbind(checkthis, final_result)
# SEQUENCES: Adding HEADER:
sequencesaintqheader <- rbind(checkthis, peptideBiorepIntensity)
# Writing the files for PROTEIN
output <- paste0(output_dir,'/saintq_input_proteins.txt')
write.table(proteinssaintqheader,
output, sep='\t',
row.names = FALSE, col.names= FALSE, quote = FALSE)
outconfig_protein <- paste0(output_dir,'/config-saintq-proteins')
cat ("
### SAINTq parameter file
## use # to mark a line as comment
## normalize control intensities
normalize_control=false
## name of file with intensities
input_filename=saintq_input_proteins.txt
## valid: protein, peptide, fragment
input_level=protein
## column names
protein_colname=Proteins
## control bait selection rules
compress_n_ctrl=100
## test bait replicate selection rules
compress_n_rep=100
", file=outconfig_protein)
# WRITING the files for SEQUENCES
outsequences <- paste0(output_dir,'/saintq_input_peptides.txt')
write.table(sequencesaintqheader,
outsequences,
sep = '\t',
row.names = FALSE,
col.names = FALSE,
quote = FALSE)
outconfig_peptide <- paste0(output_dir,'/config-saintq-peptides')
cat ("
### SAINTq parameter file
## use # to mark a line as comment
## normalize control intensities
normalize_control=false
## name of file with intensities
input_filename=saintq_input_peptides.txt
## type of intensity
## valid: protein, peptide, fragment
input_level=peptide
## column names
protein_colname=Proteins
pep_colname=Sequence
## control bait selection rules
compress_n_ctrl=100
## test bait replicate selection rules
compress_n_rep=100
## peptide selection rules
min_n_pep=3
best_prop_pep=0.5
", file=outconfig_peptide)
if(verbose){
message(">> NEW 4 FILES CREATED:")
message("\t- saintq-config-peptides")
message("\t- saintq-config-proteins")
message("\t- saintq_input_peptides.txt")
message("\t- saintq_input_proteins.txt")
message(">> DONE! ")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.