R/normalizeTumorBoost.R

###########################################################################/**
# @RdocGeneric normalizeTumorBoost
# @alias normalizeTumorBoost.numeric
#
# @title "Normalizes allele B fractions for a tumor given a match normal"
#
# \description{
#  TumorBoost [1] is a normalization method that normalizes the allele B
#  fractions of a tumor sample given the allele B fractions and genotypes
#  of a matched normal.
#  The method is a single-sample (single-pair) method.
#  It does not require total copy-number estimates.
#  The normalization is done such that the total copy number is
#  unchanged afterwards.
# }
#
# \usage{
# @usage normalizeTumorBoost,numeric
# }
#
# \arguments{
#  \item{betaT, betaN}{Two @numeric @vectors each of length J with
#     tumor and normal allele B fractions, respectively.}
#  \item{muN}{An optional @vector of length J containing
#     normal genotypes calls in (0,1/2,1,@NA) for (AA,AB,BB).}
#  \item{preserveScale}{If @TRUE, SNPs that are heterozygous in the
#    matched normal are corrected for signal compression using an estimate
#    of signal compression based on the amount of correction performed
#    by TumorBoost on SNPs that are homozygous in the matched normal.}
#  \item{flavor}{A @character string specifying the type of
#     correction applied.}
#  \item{...}{Not used.}
# }
#
# \value{
#   Returns a @numeric @vector of length J containing the normalized
#   allele B fractions for the tumor.
#   Attribute \code{modelFit} is a @list containing model fit parameters.
# }
#
# \details{
#   Allele B fractions are defined as the ratio between the allele B signal
#   and the sum of both (all) allele signals at the same locus.
#   Allele B fractions are typically within [0,1], but may have a slightly
#   wider support due to for instance negative noise.
#   This is typically also the case for the returned normalized
#   allele B fractions.
# }
#
# \section{Flavors}{
#  This method provides a few different "flavors" for normalizing the
#  data.  The following values of argument \code{flavor} are accepted:
#  \itemize{
#   \item{v4: (default) The TumorBoost method, i.e. Eqns. (8)-(9) in [1].}
#   \item{v3: Eqn (9) in [1] is applied to both heterozygous and homozygous
#             SNPs, which effectively is v4 where the normalized allele B
#             fractions for homozygous SNPs becomes 0 and 1.}
#   \item{v2: ...}
#   \item{v1: TumorBoost where correction factor is forced to one, i.e.
#             \eqn{\eta_j=1}.  As explained in [1], this is a suboptimal
#             normalization method.  See also the discussion in the
#             paragraph following Eqn (12) in [1].}
#  }
# }
#
# \section{Preserving scale}{
#  \emph{As of \pkg{aroma.light} v1.33.3 (March 30, 2014),
#  argument \code{preserveScale} no longer has a default value and has
#  to be specified explicitly.  This is done in order to change the
#  default to @FALSE in a future version, while minimizing the risk
#  for surprises.}
#
#  Allele B fractions are more or less compressed toward a half, e.g.
#  the signals for homozygous SNPs are slightly away from zero and one.
#  The TumorBoost method decreases the correlation in allele B fractions
#  between the tumor and the normal \emph{conditioned on the genotype}.
#  What it does not control for is the mean level of the allele B fraction
#  \emph{conditioned on the genotype}.
#
#  By design, most flavors of the method will correct the homozygous SNPs
#  such that their mean levels get close to the expected zero and
#  one levels.  However, the heterozygous SNPs will typically keep the
#  same mean levels as before.
#  One possibility is to adjust the signals such as the mean levels of
#  the heterozygous SNPs relative to that of the homozygous SNPs is
#  the same after as before the normalization.
#
#  If argument \code{preserveScale=TRUE}, then SNPs that are heterozygous
#  (in the matched normal) are corrected for signal compression using
#  an estimate of signal compression based on the amount of correction
#  performed by TumorBoost on SNPs that are homozygous
#  (in the matched normal).
#
#  The option of preserving the scale is \emph{not} discussed in the
#  TumorBoost paper [1], which presents the \code{preserveScale=FALSE}
#  version.
# }
#
# @examples "../incl/normalizeTumorBoost.Rex"
#
# @author "HB, PN"
#
# \references{
# [1] @include "../incl/BengtssonNeuvial_2010.bib.Rdoc" \cr
# }
#*/###########################################################################
setMethodS3("normalizeTumorBoost", "numeric", function(betaT, betaN, muN=callNaiveGenotypes(betaN), preserveScale=FALSE, flavor=c("v4", "v3", "v2", "v1"), ...) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument: 'betaT' & 'betaN':
  betaT <- as.numeric(betaT);
  betaN <- as.numeric(betaN);

  J <- length(betaT);
  if (length(betaN) != J) {
    stop("The length of arguments 'betaT' and 'betaN' differ: ", length(betaN), " != ", J);
  }

  # Argument: 'muN':
  if (length(muN) != J) {
    stop("Argument 'muN' does not match the number of loci: ", length(muN), " != ", J);
  }
  knownGenotypes <- c(0, 1/2, 1, NA);
  unknown <- which(!is.element(muN, knownGenotypes));
  n <- length(unknown);
  if (n > 0) {
    unknown <- unique(muN[unknown]);
    stop("Argument 'muN' contains unknown values: ", hpaste(unknown));
  }

  # Argument: 'preserveScale':
  preserveScale <- as.logical(preserveScale);

  # Argument: 'flavor':
  flavor <- match.arg(flavor);



  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Extract data
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Identify set to be updated
  toUpdate <- which(is.finite(betaT) & is.finite(betaN) & is.finite(muN));


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Estimate delta
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  delta <- (betaN - muN);

  if (flavor == "v1") {
    b <- 1;
  } else if (flavor == "v2") {
    b <- rep(1, times=length(delta));
    isDown <- (betaT < betaN);
    isBetaNZero <- (betaN == 0);
    isBetaNOne <- (betaN == 1);
    idxs <- which(isDown & !isBetaNZero);
    b[idxs] <- betaT[idxs]/betaN[idxs];
    idxs <- which(!isDown & !isBetaNOne);
    b[idxs] <- (1-betaT[idxs])/(1-betaN[idxs]);
    # Not needed anymore
    isDown <- idxs <- NULL;

    # Treat the case when the estimated SNP effect is zero
    # Then we want the normalized value to be exactly zero or one.
    idxs <- which(delta == 0);

  } else if (flavor == "v3") {
    b <- rep(1, times=length(delta));
    isHomA <- (muN == 0);
    isHomB <- (muN == 1);
    isHet <- (!isHomA & !isHomB);
    isDown <- (betaT < betaN);
    isBetaNZero <- (betaN == 0);
    isBetaNOne <- (betaN == 1);
    idxs <- which((isHet & isDown & !isBetaNZero) | (isHomA & !isBetaNZero));
    b[idxs] <- betaT[idxs]/betaN[idxs];
    idxs <- which((isHet & !isDown & !isBetaNOne) | (isHomB & !isBetaNOne));
    b[idxs] <- (1-betaT[idxs])/(1-betaN[idxs]);
    # Not needed anymore
    isDown <- isHet <- isHomA <- isHomB <- idxs <- NULL;
  } else if (flavor == "v4") {
    # This is the published TumorBoost normalization method
    b <- rep(1, times=length(delta));
    isHet <- (muN != 0 & muN != 1);
    isDown <- (betaT < betaN);
    idxs <- which(isHet & isDown);
    b[idxs] <- betaT[idxs]/betaN[idxs];
    idxs <- which(isHet & !isDown);
    b[idxs] <- (1-betaT[idxs])/(1-betaN[idxs]);
    # Not needed anymore
    isDown <- isHet <- idxs <- NULL;
  }

  delta <- b * delta;

  # Sanity check
  stopifnot(length(delta) == J);

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Normalize
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # In very rare cases delta can be non-finite while betaT is.
  # This can happen whenever muN or betaN is non-finite.  Then:
  #   ok <- is.finite(delta);
  #   ok <- which(ok);
  #   betaTN[ok] <- betaT[ok] - delta[ok];
  # It can be debated whether one should correct a SNP in this case, for
  # which betaTN then become non-finite too.  If not correcting, we will
  # end up with betaTN == betaT value which is not from the same mixture
  # distribution as the other corrected values.
  # For now, we ignore this. /HB 2010-08-19 [on the flight to SFO]
  betaTN <- betaT - delta;


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Preserve scale of heterozygotes relative to homozygotes
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  if (preserveScale) {
    isHom <- (muN == 0 | muN == 1);
    idxs <- which(isHom);

    # Signal compression in homozygous SNPs before TBN
    eta <- median(abs(betaT[idxs]-1/2), na.rm=TRUE);

    # Signal compression in homozygous SNPs after TBN
    etaC <- median(abs(betaTN[idxs]-1/2), na.rm=TRUE);

    # Correction factor
    sf <- etaC/eta;

    # Correct
    isHet <- !isHom;
    isDown <- (betaTN < 1/2);
    idxs <- which(isHet & isDown);
    betaTN[idxs] <- 1/2 - sf * (1/2 - betaTN[idxs]);
    idxs <- which(isHet & !isDown);
    betaTN[idxs] <- 1/2 + sf * (betaTN[idxs] - 1/2);

    # Not needed anymore
    isDown <- isHom <- isHet <- idxs <- eta <- etaC <- NULL;
  } else {
    sf <- NA_real_;
  }


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Return normalized data
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  modelFit <- list(
    method = "normalizeTumorBoost",
    flavor = flavor,
    delta = delta,
    preserveScale = preserveScale,
    scaleFactor = sf
  );
  attr(betaTN, "modelFit") <- modelFit;

  # Sanity check
  stopifnot(length(betaTN) == J);

  betaTN;
}) # normalizeTumorBoost()


############################################################################
# HISTORY:
# 2014-03-30
# o Argument 'preserveScale' for normalizeTumorBoost() is now required.
# o Swapped the order of argument 'flavor' and 'preserveScale'.
# 2010-09-23
# o CLEANUP: normalizeTumorBoost() now uses which() instead of
#   whichVector() of 'R.utils'.  The former used to be significantly
#   slower than the latter, but that is no longer the case.
# 2010-08-04
# o Added argument 'preserveScale' to normalizeTumorBoost().
# 2010-03-18
# o BUG FIX: For flavors "v2" and "v3" NaN:s could be introduced if betaN
#   was exactly zero or exactly one.
# 2009-07-08
# o Now the arguments are 'betaT', 'betaN' and 'muN'.
# o Added an example() with real data.
# 2009-07-06
# o Created from process() of TumorBoostNormalization in aroma.cn.
# o Added model 'flavor' "v4" which corrects heterozygots according to "v2"
#   and homozygotes according to "v1".
# o Added model 'flavor' "v3".  Suggested by PN last night over a Guinness
#   at the pub after a long day of hard work.
# 2009-06-22
# o Added model 'flavor' "v2".
# 2009-06-08
# o The constructor of TumorBoostNormalization now only takes an
#   AromaUnitGenotypeCallSet for argument 'gcN'.  It no longer takes an
#   AromaUnitFracBCnBinarySet object.
# 2009-05-17
# o Now the constructor of TumorBoostNormalization asserts that there are
#   no stray arguments.
# 2009-04-29
# o Created.
############################################################################

Try the aroma.light package in your browser

Any scripts or data that you put into this service are public.

aroma.light documentation built on Nov. 8, 2020, 4:56 p.m.