Nothing
data_dir = system.file("extdata/MAE.rds", package = "animalcules")
MAE = readRDS(data_dir)
# Summary Plot Top
test_that("filter_summary_bar_density() is working", {
p <- filter_summary_bar_density(MAE,
samples_discard = c("subject_2", "subject_4"),
filter_type = "By Metadata",
sample_condition = "AGE")
expect_equal(length(p), 7)
})
# Summary Plot Bottom
test_that("filter_summary_bar_density() is working", {
p <- filter_summary_bar_density(MAE,
samples_discard = c("subject_2", "subject_4"),
filter_type = "By Metadata",
sample_condition = "SEX")
expect_equal(length(p), 7)
})
# Categorize
test_that("filter_categorize() is working", {
microbe <- MAE[['MicrobeGenetics']]
samples <- as.data.frame(colData(microbe))
result <- filter_categorize(samples,
sample_condition = "AGE",
new_label="AGE_GROUP",
bin_breaks=c(0,55,75,100),
bin_labels=c('Young','Adult',"Elderly"))
expect_equal(dim(result$sam_table), c(50,5))
expect_equal(length(result$plot.unbinned), 7)
expect_equal(length(result$plot.binned), 7)
})
## Relative Abundance Stacked Bar Plot
test_that("relabu_barplot() is working", {
p <- relabu_barplot(MAE,
tax_level="family",
order_organisms=c('Retroviridae'),
sort_by="organisms",
sample_conditions=c('SEX', 'AGE'),
show_legend=TRUE)
expect_equal(length(p), 7)
})
## Relative Abundance Heatmap
test_that("relabu_heatmap() is working", {
p <- relabu_heatmap(MAE,
tax_level="genus",
sort_by="conditions",
sample_conditions=c("SEX", "AGE"))
expect_equal(length(p), 7)
})
## Relative Abundance Boxplot
test_that("relabu_boxplot() is working", {
p <- relabu_boxplot(MAE,
tax_level="genus",
organisms=c("Escherichia", "Actinomyces"),
condition="SEX",
datatype="logcpm")
expect_equal(length(p), 8)
})
## Alpha Diversity Boxplot
test_that("alpha_div_boxplot() is working", {
p <- alpha_div_boxplot(MAE = MAE,
tax_level = "genus",
condition = "DISEASE",
alpha_metric = "shannon")
expect_equal(length(p), 7)
})
## Alpha Diversity Statistical Test
test_that("do_alpha_div_test() is working", {
p <- do_alpha_div_test(MAE = MAE,
tax_level = "genus",
condition = "DISEASE",
alpha_metric = "shannon",
alpha_stat = "T-test")
pval_wil <- round(p[1,1,drop=TRUE], 2)
pval_t <- round(p[1,2,drop=TRUE], 2)
expect_equal(pval_wil, 0.33)
expect_equal(pval_t, 0.42)
})
## Beta Diversity Heatmap
test_that("diversity_beta_heatmap() is working", {
p <- diversity_beta_heatmap(MAE = MAE,
tax_level = 'genus',
input_beta_method = "bray",
input_bdhm_select_conditions = 'DISEASE',
input_bdhm_sort_by = 'condition')
expect_equal(length(p), 7)
})
## Beta Diversity Boxplot
test_that("diversity_beta_boxplot() is working", {
p <- diversity_beta_boxplot(MAE = MAE,
tax_level = 'genus',
input_beta_method = "bray",
input_select_beta_condition = 'DISEASE')
expect_equal(length(p), 7)
})
## Beta Diversity Test
test_that("diversity_beta_test() is working", {
p <- diversity_beta_test(MAE = MAE,
tax_level = 'genus',
input_beta_method = "bray",
input_select_beta_condition = 'DISEASE',
input_select_beta_stat_method = 'PERMANOVA',
input_num_permutation_permanova = 999)
expect_equal(p$Df[1], 1)
expect_equal(p$Df[2], 48)
expect_equal(p$Df[3], 49)
})
# PCA
test_that("dimred_pca() is working", {
result <- dimred_pca(MAE,
tax_level="genus",
color="AGE",
shape="DISEASE",
pcx=1,
pcy=2,
datatype="logcpm")
expect_equal(dim(result$table), c(50,4))
})
## PCoA
test_that("dimred_pcoa() is working", {
result <- dimred_pcoa(MAE,
tax_level="genus",
color="AGE",
shape="DISEASE",
axx=1,
axy=2,
method="bray")
expect_equal(dim(result$table), c(50,4))
})
## tSNE
test_that("dimred_tsne() is working", {
result <- dimred_tsne(MAE,
tax_level="phylum",
color="AGE",
shape="GROUP",
k="3D",
initial_dims=30,
perplexity=10,
datatype="logcpm")
expect_equal(length(result$plot), 8)
})
# Differential Analysis
test_that("differential_abundance() is working", {
p <- differential_abundance(MAE,
tax_level="phylum",
input_da_condition=c("DISEASE"),
min_num_filter = 2,
input_da_padj_cutoff = 0.8)
expect_equal(dim(p), c(8,8))
})
# Biomarker
test_that("find_biomarker() is working", {
p <- find_biomarker(MAE,
tax_level="genus",
input_select_target_biomarker=c("SEX"),
nfolds = 3,
nrepeats = 3,
seed = 99,
percent_top_biomarker = 0.2,
model_name = "logistic regression")
expect_equal(length(p), 3)
})
# inverse_simpson
test_that("inverse_simpson() is working", {
p <- inverse_simpson(seq_len(10))
p <- round(p, 2)
expect_equal(p, 7.86)
})
# counts_to_relabu
test_that("counts_to_relabu() is working", {
p <- counts_to_relabu(matrix(seq_len(12), 4))
expect_equal(nrow(p), 4)
})
# counts_to_logcpm
test_that("counts_to_logcpm() is working", {
p <- counts_to_logcpm(matrix(seq_len(12),4))
expect_equal(nrow(p), 4)
})
# mae_pick_samples
test_that("mae_pick_samples() is working", {
p <- mae_pick_samples(MAE, isolate_samples=c("subject_9", "subject_14"))
expect_equal(length(p), 2)
})
# mae_pick_organisms
test_that("mae_pick_organisms() is working", {
p <- mae_pick_organisms(MAE, isolate_organisms=c("ti|54005", "ti|73001"))
expect_equal(length(p), 1)
})
# df_char_to_factor
test_that("df_char_to_factor() is working", {
p <- df_char_to_factor(matrix(seq_len(12)))
expect_equal(nrow(p), 12)
})
# percent
test_that("percent() is working", {
p <- percent(c(0.42, 0.15, 0.4, 0.563, 0.2))
expect_equal(p[1], "42.00%")
})
# is_categorical
test_that("is_categorical() is working", {
p <- is_categorical(2)
expect_true(p)
})
# is_integer0
test_that("is_integer0() is working", {
p <- is_integer0(2)
expect_false(p)
})
# is_integer1
test_that("is_integer1() is working", {
p <- is_integer1(2)
expect_false(p)
})
# pct2str
test_that("pct2str() is working", {
p <- pct2str(0.23)
expect_equal(p, "23.00")
})
# shannon
test_that("shannon() is working", {
p <- shannon(seq_len(10))
p <- round(p, 2)
expect_equal(p, 2.15)
})
# gini_simpson
test_that("gini_simpson() is working", {
p <- gini_simpson(seq_len(10))
p <- round(p, 2)
expect_equal(p, 0.87)
})
# grep_tid
test_that("grep_tid() is working", {
p <- grep_tid("ti|700015|org|Coriobacterium_glomerans_PW2")
expect_equal(p, "700015")
})
# find_taxonomy
test_that("find_taxonomy() is working", {
p <- find_taxonomy(1200)
expect_equal(p$Taxon$Taxon$TaxId, "131567")
})
# diversities
test_that("diversities() is working", {
p <- diversities(matrix(seq_len(12), nrow = 3),index="shannon")
expect_equal(round(p[1], 2), 1.01)
})
# diversities_help
test_that("diversities_help() is working", {
p <- diversities_help(matrix(seq_len(12), nrow = 3),index="shannon")
expect_equal(round(p[1], 2), 1.01)
})
# alpha_div_test
test_that("alpha_div_test() is working", {
df_test <- data.frame(richness = seq_len(10),
condition = c(rep(1,5),
rep(0,5)))
p <- alpha_div_test(df_test, alpha_stat="Wilcoxon rank sum test")
expect_equal(round(as.numeric(as.character(p$output[2])), 4), 0.0011)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.