Nothing
# animalcules.rds is an R list object that contains three dataframe:
# count_table, gene_expression_table and metadata_table. These three
# tables come from a simulated dataset we built that contains 50 samples.
# All values are simulated using rnorm().
# TB_example_dataset.rds is an R MultiAssayExperiment object that contains
# two dataframe: count_table and metadata_table. These two tables come
# from a published dataset from the paper:
# Botero LE, Delgado-Serrano L, Cepeda ML, Bustos JR, Anzola JM,
# Del Portillo P, Robledo J, Zambrano MM. Respiratory tract clinical
# sample selection for microbiota analysis in patients with pulmonary
# tuberculosis. Microbiome. 2014 Aug 25;2:29. doi: 10.1186/2049-2618-2-29.
# eCollection 2014. PubMed PMID: 25225609; PubMed Central PMCID: PMC4164332.
# Then we used a tool called PathoScope to process and generate the dataset.
# asthma_example_dataset.rds is an R MultiAssayExperiment object that
# contains two dataframe: count_table and metadata_table. These two tables
# come from a published dataset from the paper:
# Castro-Nallar E, Shen Y, Freishtat RJ, PĂ©rez-Losada M, Manimaran S, Liu G,
# Johnson WE, Crandall KA. Integrating microbial and host transcriptomics to
# characterize asthma-associated microbial communities. BMC Med Genomics.
# 2015 Aug 16;8:50. doi: 10.1186/s12920-015-0121-1. PubMed PMID: 26277095;
# PubMed Central PMCID: PMC4537781.
# Then we used a tool called PathoScope to process and generate the dataset.
data_raw <- base::system.file("extdata/animalcules.rds", package = "animalcules") %>%
base::readRDS()
se_mgx <- magrittr::use_series(data_raw, count_table) %>%
base::data.matrix() %>%
S4Vectors::SimpleList() %>%
magrittr::set_names("MGX")
se_ge <- magrittr::use_series(data_raw, gene_expression_table) %>%
base::data.matrix() %>%
S4Vectors::SimpleList() %>%
magrittr::set_names("GeneExpression")
se_colData <- magrittr::use_series(data_raw, metadata_table) %>%
S4Vectors::DataFrame()
se_rowData <- magrittr::use_series(data_raw, tax_table) %>%
base::data.frame() %>%
dplyr::mutate_all(as.character) %>%
dplyr::select(superkingdom, phylum, class, order, family, genus) %>%
S4Vectors::DataFrame()
microbe_se <- SummarizedExperiment::SummarizedExperiment(assays = se_mgx,
colData = se_colData,
rowData = se_rowData)
host_se <- SummarizedExperiment::SummarizedExperiment(assays = se_ge,
colData = se_colData)
mae_experiments <- S4Vectors::SimpleList(MicrobeGenetics = microbe_se,
HostGenetics = host_se)
MAE <- MultiAssayExperiment::MultiAssayExperiment(experiments = mae_experiments,
colData = se_colData)
saveRDS(MAE, "extdata/MAE.rds")
microbe <- MAE[['MicrobeGenetics']] #double bracket subsetting is easier
tax_table <- as.data.frame(rowData(microbe)) # organism x taxlev
sam_table <- as.data.frame(colData(microbe)) # sample x condition
counts_table <- as.data.frame(assays(microbe))[,rownames(sam_table)] # organism x sample
toy_data <- list("tax_table"=tax_table,
"sam_table"=sam_table,
"counts_table"=counts_table)
saveRDS(toy_data, "extdata/toy_data.rds")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.