Nothing
#' Pipeline of anamiR is applied to given output from \link{GSEA_ana}.
#'
#' This function will use \link{differExp_discrete} and
#' \link{negative_cor} to do the deeper analysis of given data which
#' is from \link{GSEA_ana}.
#'
#' @return list format containing matrix for each chosen pathway.
#' The format of matrix is like the output from \link{negative_cor}.
#'
#' @seealso \link{differExp_discrete} and \link{negative_cor}.
#'
#' @param table list format containing both selected gene and miRNA
#' expression data for each chosen pathway. output of \link{GSEA_ana}
#' @param pheno.data phenotype data.
#' @param class string. Choose one features from all rows of phenotype data.
#' @param DE_method statistical method for finding differential genes or miRNAs,
#' including "t.test", "wilcox.test", "limma". Default is "t.test".
#' @param limma.trend logical, only matter when limma is chosen to be the method.
#' From function \code{\link[limma]{eBayes}}.
#' @param t_test.var logical, only matter when limma is chosen to be the method.
#' Whether to treat the two variances as being equal. From function
#' \code{\link[stats]{t.test}}
#' @param log2 logical, if this data hasn't been log2 transformed yet, this one
#' should be TRUE. Default is FALSE.
#' @param p_adjust.method Correction method for multiple testing. (If you are
#' using DESeq for method, this param would not affect the result) From
#' function \code{\link[stats]{p.adjust}}. Default is "BH".
#' @param cor_cut an numeric value indicating a threshold of correlation
#' coefficient for every potential miRNA-genes interactions. Default is -0.3,
#' however, if no interaction pass the threshold, this function would add
#' 0.2 value in threshold until at least one interaction passed the threshold.
#'
#' @examples
#' ## Load example data
#'
#' require(data.table)
#'
#' cc <- system.file("extdata", "pheno_data.csv", package = "anamiR")
#' pheno.data <- fread(cc, fill = TRUE, header = TRUE)
#'
#' ## adjust data format
#' pheno_name <- pheno.data[["Sample"]]
#' pheno.data <- pheno.data[, -1]
#' pheno.data <- as.matrix(pheno.data)
#' row.names(pheno.data) <- pheno_name
#' data(table_pre)
#'
#' result <- GSEA_res(table = table_pre, pheno.data = pheno.data,
#' class = "ER", DE_method = "limma", cor_cut = 0)
#'
#' @importFrom SummarizedExperiment SummarizedExperiment
#' @importFrom S4Vectors SimpleList
#' @export
GSEA_res <- function(
table,
pheno.data,
class,
DE_method = c("t.test",
"limma",
"wilcox.test",
"DESeq"),
limma.trend = FALSE,
t_test.var = FALSE,
log2 = FALSE,
p_adjust.method = "BH",
cor_cut = -0.3
) {
sup_table <- list()
#workflow
n <- length(table) / 2
for (i in seq_len(n)) {
mirna_data <- table[[2 * i - 1]]
mrna_data <- table[[2 * i]]
mirna_se <- SummarizedExperiment::SummarizedExperiment(
assays = S4Vectors::SimpleList(counts=mirna_data),
colData = pheno.data)
mrna_se <- SummarizedExperiment::SummarizedExperiment(
assays = S4Vectors::SimpleList(counts=mrna_data),
colData = pheno.data)
mirna_dif <- differExp_discrete(se = mirna_se,
class = class, method = DE_method,
limma.trend = limma.trend,
t_test.var = t_test.var,
log2 = log2, logratio = 0,
p_value.cutoff = 1,
p_adjust.method = p_adjust.method)
mrna_dif <- differExp_discrete(se = mrna_se,
class = class, method = DE_method,
limma.trend = limma.trend,
t_test.var = t_test.var,
log2 = log2, logratio = 0,
p_value.cutoff = 1,
p_adjust.method = p_adjust.method)
cor <- negative_cor(mrna_data = mrna_dif, mirna_data = mirna_dif,
cut.off = cor_cut)
sup <- database_support(cor_data = cor, org = "hsa",
Sum.cutoff = 1)
sup_table[[i]] <- sup
name <- strsplit(names(table)[2 * i], "-")[[1]][1]
names(sup_table)[i] <- name
}
return(sup_table)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.