Nothing
#' UMI4C-class
#'
#' @name UMI4C
#' @aliases UMI4C-class
#' @docType class
#' @note The \code{UMI4C} class extends the \linkS4class{SummarizedExperiment} class.
#' @slot colData Data.frame containing the information for constructing the
#' UMI4C experiment object. Needs to contain the following columns:
#' \itemize{
#' \item \code{sampleID}: Unique identifier for the sample.
#' \item \code{condition}: Condition for performing differential analysis.
#' Can be control and treatment, two different cell types, etc.
#' \item \code{replicate}: Number or ID for identifying different replicates.
#' \item \code{file}: Path to the files outputed by \code{\link{contactsUMI4C}}.
#' }
#' @slot rowRanges \linkS4class{GRanges} object with the coordinates for
#' the restriction fragment ends, their IDs and other additional annotation columns.
#' @slot metadata List containing the following elements:
#' \enumerate{
#' \item \code{bait}: \linkS4class{GRanges} object representing the position
#' of the bait used for the analysis.
#' \item \code{scales}: Numeric vector containing the scales used for
#' calculating the domainogram.
#' \item \code{min_win_factor}: Factor for calculating the minimum molecules
#' requiered in a window for not merging it with the next one when
#' calculating the adaptative smoothing trend.
#' \item \code{grouping}: Columns in \code{colData} used for the different
#' sample groupings, accessible through \code{groupsUMI4C}.
#' \item \code{normalized}: Logical indicating whether samples/groups are
#' normalized or not.
#' \item \code{region}: \linkS4class{GRanges} with the coordinates of
#' the genomic window used for analyzing UMI4C data.
#' \item \code{ref_umi4c}: Name of the sample or group used as reference for
#' normalization.
#' }
#' @slot assays Matrix where each row represents a restriction fragment site
#' and columns represent each sample or group defined in \code{grouping}.
#' After running the \code{\link{makeUMI4C}} function, it will contain the
#' following data:
#' \enumerate{
#' \item \code{umis}: Raw number of UMIs detected by \code{\link{contactsUMI4C}}.
#' \item \code{norm_mat}: Normalization factors for each sample/group and fragment end.
#' \item \code{trend}: Adaptative smoothing trend of UMIs.
#' \item \code{geo_coords}: Geometric coordinates obtained when performing
#' the adaptative smoothing.
#' \item \code{scale}: Scale selected for the adaptative smoothing.
#' \item \code{sd}: Stantard deviation for the adaptative smoothing trend.
#' }
#' @slot dgram List containing the domainograms for each sample. A domainogram
#' is matrix where columns are different scales selected for merging UMI counts
#' and rows are the restriction fragments.
#' @slot groupsUMI4C List of \code{UMI4C} objects with the specific groupings.
#' @slot results List containing the results for the differential analysis ran
#' using \code{\link{fisherUMI4C}}.
#' @rdname UMI4C
#' @import methods
#' @export
.UMI4C <- setClass("UMI4C",
slots = representation(
dgram = "SimpleList",
groupsUMI4C = "SimpleList",
results = "SimpleList"
),
contains = "RangedSummarizedExperiment"
)
setValidity("UMI4C", function(object) {
TRUE
})
#' @export
#' @import SummarizedExperiment
UMI4C <- function(dgram = S4Vectors::SimpleList(),
results = S4Vectors::SimpleList(),
groupsUMI4C = S4Vectors::SimpleList(),
...) {
se <- SummarizedExperiment(...)
.UMI4C(se,
dgram = dgram,
groupsUMI4C = groupsUMI4C,
results = results
)
}
#' Make UMI4C object
#'
#' The \linkS4class{UMI4C} constructor is the function \code{\link{makeUMI4C}}. By using
#' the arguments listed below, performs the necessary steps to analyze UMI-4C
#' data and summarize it in an object of class \linkS4class{UMI4C}.
#' @rdname UMI4C
#' @param colData Data.frame containing the information for constructing the
#' UMI4C experiment object. Needs to contain the following columns:
#' \itemize{
#' \item sampleID. Unique identifier for the sample.
#' \item condition. Condition for performing differential analysis. Can be
#' control and treatment, two different cell types, etc.
#' \item replicate. Number for identifying replicates.
#' \item file. File as outputed by \code{umi4CatsContacts} function.
#' }
#' @param viewpoint_name Character indicating the name for the used viewpoint.
#' @param grouping Name of the column in colData used to merge the samples or
#' replicates. Set to NULL for skipping grouping. Default: "condition".
#' @param normalized Logical indicating whether UMI-4C profiles should be
#' normalized to the \code{ref_umi4c} sample/group. Default: TRUE
#' @param ref_umi4c Name of the sample or group to use as reference for
#' normalization. By default is NULL, which means it will use the sample with
#' less UMIs in the analyzed region. It should be a named vector, where the name
#' corresponds to the grouping column from \code{colData} and the value represents
#' the level to use as reference.
#' @param bait_exclusion Region around the bait (in bp) to be excluded from the
#' analysis. Default: 3000bp.
#' @param bait_expansion Number of bp upstream and downstream of the bait to use
#' for the analysis (region centered in bait). Default: 1Mb.
#' @param scales Numeric vector containing the scales for calculating the
#' domainogram.
#' @param min_win_factor Proportion of UMIs that need to be found in a specific
#' window for adaptative trend calculation
#' @param sd Stantard deviation for adaptative trend.
#' @return It returns an object of the class \linkS4class{UMI4C}.
#' @import GenomicRanges
#' @importFrom stats as.formula
#' @seealso UMI4C-methods
#' @examples
#' # Load sample processed file paths
#' files <- list.files(system.file("extdata", "CIITA", "count",
#' package = "UMI4Cats"
#' ),
#' pattern = "*_counts.tsv",
#' full.names = TRUE
#' )
#'
#' # Create colData including all relevant information
#' colData <- data.frame(
#' sampleID = gsub("_counts.tsv.gz", "", basename(files)),
#' file = files,
#' stringsAsFactors = FALSE
#' )
#'
#' library(tidyr)
#' colData <- colData %>%
#' separate(sampleID,
#' into = c("condition", "replicate", "viewpoint"),
#' remove = FALSE
#' )
#'
#' # Load UMI-4C data and generate UMI4C object
#' umi <- makeUMI4C(
#' colData = colData,
#' viewpoint_name = "CIITA",
#' grouping = "condition"
#' )
#' @export
makeUMI4C <- function(colData,
viewpoint_name = "Unknown",
grouping = "condition",
normalized = TRUE,
ref_umi4c = NULL,
bait_exclusion = 3e3,
bait_expansion = 1e6,
scales = 5:150,
min_win_factor = 0.02,
sd = 2) {
if (!("condition" %in% names(colData))) {
stop("colData must contain 'condition'")
}
if (!("replicate" %in% names(colData))) {
stop("colData must contain 'replicate'")
}
if (!("sampleID" %in% names(colData))) {
stop("colData must contain 'sampleID'")
}
if (!("file" %in% names(colData))) {
stop("colData must contain 'file'")
}
if (length(grouping)>1) {
stop("Use only one varible for grouping. You can latter add more groupings using the addGrouping() function.")
}
if (!is.null(grouping)) {
if(!(grouping %in% colnames(colData))) {
stop("Grouping variable not found among colnames(colData).")
}
}
colData$sampleID <- gsub(".", "_", colData$sampleID, fixed = TRUE)
## Load UMI4C matrices
mats <- lapply(as.character(colData$file),
utils::read.delim,
header = TRUE,
stringsAsFactors = FALSE
)
names(mats) <- colData$sampleID
nrows <- vapply(mats, nrow, FUN.VALUE=integer(1))
if (length(unique(nrows)) != 1) stop("Number of rows for the supplied files is different. Please check again your methods.")
pos <- lapply(mats, function(x) paste0(x[, "chr_contact"], ":", x[, "start_contact"], "-", x[, "end_contact"]))
if (length(unique(pos)) != 1) stop("Fragment end coordinates for your files are different. Please check again your methods.")
max <- lapply(mats, function(x) max(x[, "UMIs"], na.rm = TRUE))
is_zero <- names(max)[max == 0]
if (length(is_zero) > 0) {
message(
"Warning:\n",
"Your samples ", paste0(is_zero, collapse = " "),
" don't have any UMIs for the given fragment ends. ",
"Check again your analysis and experiment quality."
)
}
## Obtain bait information
baits <- lapply(
mats,
function(x) {
unique(GRanges(
seqnames = unique(x[, "chr_bait"]),
ranges = IRanges(
start = x[, "start_bait"],
end = x[, "end_bait"]
)
))
}
)
baits <- unlist(GRangesList(baits))
bait <- unique(baits)
if (length(bait) > 1) {
stop("Bait position for the supplied samples differ. Please check again your methods.")
}
bait$name <- viewpoint_name
rownames(bait) <- NULL
## Create assay matrix with raw UMIs
umis <- do.call(rbind, mats)
umis <- umis[, !grepl("bait", colnames(umis))]
colnames(umis) <- c("chr_contact", "start_contact", "end_contact", "UMIs")
umis$sampleID <- unlist(lapply(
strsplit(rownames(umis), ".", fixed = TRUE),
function(x) x[1]
))
umis.d <- reshape2::dcast(umis,
chr_contact + start_contact + end_contact ~ sampleID,
value.var = "UMIs"
)
umis.d <- umis.d[order(umis.d$chr_contact, umis.d$start_contact), ]
umis.d$id_contact <- paste0("frag_", seq_len(nrow(umis.d)))
# Create row_ranges
rowRanges <- GRanges(
seqnames = umis.d$chr_contact,
ranges = IRanges(
start = umis.d$start_contact,
end = umis.d$end_contact
)
)
rowRanges$id_contact <- umis.d$id_contact
# Create assay matrix
assay <- as.matrix(umis.d[,-c(seq_len(3), ncol(umis.d))])
rownames(assay) <- umis.d$id_contact
## Create summarizedExperiment
umi4c <- UMI4C(
colData = colData,
rowRanges = rowRanges,
metadata = list(
bait = bait,
scales = scales,
min_win_factor = min_win_factor,
normalized = normalized,
grouping = NULL
),
assays = SimpleList(umi = assay)
)
## Remove region around bait
bait_exp <- GenomicRanges::resize(metadata(umi4c)$bait,
fix = "center",
width = bait_exclusion
)
umi4c <- subsetByOverlaps(umi4c, bait_exp, invert = TRUE)
if (any(colSums(assay(umi4c)) == 0)) {
stop("The number of UMIs at least for one sample are 0. Try reducing your
bait_exclusion value.")
}
## Remove regions outside scope
region <- GenomicRanges::resize(metadata(umi4c)$bait,
fix = "center",
width = bait_expansion
)
umi4c <- subsetByOverlaps(umi4c, region)
metadata(umi4c)$region <- region
## Divide upstream and downstream coordinates
rowRanges(umi4c)$position <- NA
rowRanges(umi4c)$position[start(rowRanges(umi4c)) < start(metadata(umi4c)$bait)] <- "upstream"
rowRanges(umi4c)$position[start(rowRanges(umi4c)) >= start(metadata(umi4c)$bait)] <- "downstream"
##### PROCESSING FOR PLOTTING
## Add stats using sampleIDs -------------
ref <- metadata(umi4c)$ref_umi4c
if (is.null(ref) | !("sampleID" %in% names(ref))) {
# Get sample with less UMIs if no ref present
metadata(umi4c)$ref_umi4c <- colnames(assay(umi4c))[which(colSums(assay(umi4c)) == min(colSums(assay(umi4c))))]
} else {
# Use value from named list
metadata(umi4c)$ref_umi4c <- refs[grouping]
}
# Get normalization matrix
umi4c <- getNormalizationMatrix(umi4c)
## Calculate domainograms
umi4c <- calculateDomainogram(umi4c, scales = scales, normalized = normalized)
## Calculate adaptative trend
umi4c <- calculateAdaptativeTrend(umi4c, sd = sd, normalized = normalized)
## Use groupings -----
if (!is.null(grouping)) {
umi4c <- addGrouping(umi4c, grouping=grouping, normalized=normalized, scales=scales, sd=sd)
}
return(umi4c)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.