Nothing
#' @title corrTable
#' @description An internal function for the mirMrnaInt function. This will
#' work out the pearson correlations between the miR and mRNA DE results data
#' over the time series.
#' @param names Dataframe with combined list of mRNA (single wikipathway of
#' interest) and miR names. Produced by mirMrnaInt.
#' @param miR_exprs miR dataframe with a single DE result type (e.g. log2fc) and
#' an ID type.
#' @param mRNA_wiki mRNA dataframe containing mRNAs found in the pathway
#' of interest. Will also contain a single DE result type (e.g. log2fc) and
#' an ID type.
#' @param maxInt Maximum number of data samples in your datasets e.g. how many
#' time points.
#' @return A matrix of each mRNA and miR interaction and averaged correlations.
#' @importFrom stats cor
#' @noRd
corrTable <- function(names, miR_exprs, mRNA_wiki, maxInt){
# Each miR and mRNA could interact so extract their names
n1 <- as.character(names[1])
n2 <- as.character(names[2])
# Create correlation
r <- stats::cor(as.numeric(miR_exprs[n1, seq_len(maxInt)]),
as.numeric(mRNA_wiki[n2, seq_len(maxInt)]))
# Create correlation matrix
data.frame(row.names = paste(n1,":",n2, sep = ""),
corr =r,
miR = names[1],
mRNA = names[2],
miR_Entrez = miR_exprs[n1, -c(seq_len(maxInt))],
mRNA_Entrez = mRNA_wiki[n2, -c(seq_len(maxInt))])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.