Nothing
# Variational Bayesian Gaussian mixture model (VB-GMM)
# X: N x D data matrix
# init: k (1 x 1) or label (1 x n, 1<=label(i)<=k) or center (d x k)
# Reference: Pattern Recognition and Machine Learning by Christopher M. Bishop (P.474)
# Part of the implementation is based on the Matlab code vbgm.m from Michael Chen
# Matlab code: http://www.mathworks.com/matlabcentral/fileexchange/35362-variational-bayesian-inference-for-gaussian-mixture-model
# Author: Yue Li (yueli@cs.toronto.edu)
# Main function vbgmm running four separate functions, namely,
# intialization: initialization of responsibility
# vexp: Variational-Expectation
# vmax: V-Maximimization
# vbound: V-(lower)-bound evaluation
require(pracma)
require(Matrix)
############ bsxfun {pracma} with single expansion (real Matlab style) ############
# expandByRow applies only when x is a square matrix
bsxfun.se <- function(func, x, y, expandByRow=TRUE) {
if(length(y) == 1) return(arrayfun(func, x, y)) else
stopifnot(nrow(x) == length(y) || ncol(x) == length(y))
expandCol <- nrow(x) == length(y)
expandRow <- ncol(x) == length(y)
if(expandCol & expandRow & expandByRow) expandCol <- FALSE
if(expandCol & expandRow & !expandByRow) expandRow <- FALSE
# repeat row (if dim2expand = 1, then length(y) = ncol(x))
if(expandRow) y.repmat <- matrix(rep(as.numeric(y), each=nrow(x)), nrow=nrow(x))
# repeat col (if dim2expand = 2, then length(y) = nrow(x))
if(expandCol) y.repmat <- matrix(rep(as.numeric(y), ncol(x)), ncol=ncol(x))
bsxfun(func, x, y.repmat)
}
############ Compute log(sum(exp(x), dim)) ############
# Compute log(sum(exp(x),dim)) while avoiding numerical underflow
logsumexp <- function(x, margin=1) {
stopifnot(is.matrix(x))
# subtract the largest in each column
y <- apply(x, margin, max)
x <- bsxfun.se("-", x, y)
s <- y + log(apply(exp(x), margin, sum))
i <- which(!is.finite(s))
if(length(i) > 0) s[i] <- y[i]
s
}
############ Logarithmic Multivariate Gamma function ############
# Compute logarithm multivariate Gamma function.
# Gamma_p(x) = pi^(p(p-1)/4) prod_(j=1)^p Gamma(x+(1-j)/2)
# log Gamma_p(x) = p(p-1)/4 log pi + sum_(j=1)^p log Gamma(x+(1-j)/2)
logmvgamma <- function(x, d) {
s <- size(x)
x <- matrix(as.numeric(x), nrow=1)
x <- bsxfun.se("+", kronecker(matrix(1,d,1), x), (1 - matrix(1:d))/2)
y <- d*(d-1)/4*log(pi) + colSums(lgamma(x))
y <- matrix(as.numeric(y), nrow=s[1], ncol=s[2])
y
}
############ Sort the model ############
# Sort model paramters in increasing order of averaged means
# of d variables
sort_components <- function(model) {
idx <- order(apply(model$m, 2, mean))
model$m <- model$m[, idx]
model$R <- model$R[, idx]
model$logR <- model$logR[, idx]
model$alpha <- model$alpha[idx]
model$kappa <- model$kappa[idx]
model$v <- model$v[idx]
model$M <- model$M[,,idx]
model
}
############ Vector dot product ############
# handle single row matrix by multiplying each value
# but not sum them up
dot.ext <- function(x,y,mydim) {
if(missing(mydim)) dot(x,y) else {
if(1 %in% size(x) & mydim == 1) x * y else dot(x,y)
}
}
############ Main function of VB-GMM ############
# mirprior: miRNA-specific prior
vbgmm <- function(data, init=2, prior, tol=1e-20, maxiter=2e3, mirprior=TRUE,
expectedTargetFreq=0.01, verbose=FALSE) {
data <- as.matrix(data)
n <- nrow(data)
d <- ncol(data)
X <- t(data) # Work with D by N for convenience
message(sprintf("Running VB-GMM on a %d-by-%d data ...\n", n, d))
if(missing(prior)) {
# miRNA-specific prior with alpha for target-component
# with defined target frequency (expected much lower
# than non-target freq)
if(mirprior & length(init) == 1) {
k <- init
stopifnot(expectedTargetFreq > 0 & expectedTargetFreq < 1)
expectTargetCnt <- round(expectedTargetFreq * n)
backgroundCnt <- rep((n - expectTargetCnt)/(k-1), k-1)
prior <- list(
alpha = c(expectTargetCnt, backgroundCnt),
kappa = 1,
m = as.matrix(rowMeans(X)),
v = d+1,
M = diag(1,d,d) # M = inv(W)
)
} else { # more general prior with equal alpha
if(length(init)>1) k <- ncol(init) else k <- init
prior <- list(
alpha = rep(1,k),
kappa = 1,
m = as.matrix(rowMeans(X)),
v = d+1,
M = diag(1,d,d) # M = inv(W)
)
}
} else {
stopifnot(
all(names(prior) %in% c("alpha","kappa","m","v","M")) &
all(sapply(prior, is.numeric)) & nrow(prior$m) == d &
ncol(prior$m) == 1 &
nrow(prior$M) == d & ncol(prior$M) == d)
}
if(mirprior & length(init) != 1) {
warning("mirprior is TRUE but init is not scalar (k)! Proceed as if mirprior were FALSE") }
# lower variational bound (objective function)
L <- rep(-Inf, maxiter)
converged <- FALSE
t <- 1
model <- list()
model$R <- initialization(X, init) # initialize responsibility R
while(!converged & t < maxiter) {
t <- t + 1
model <- vmax(X, model, prior)
model <- vexp(X, model)
L[t] <- vbound(X, model, prior)/n
converged <- abs(L[t] - L[t-1]) < tol * abs(L[t])
if(verbose) message(sprintf("VB-EM-%d: L = %.6f", t, L[t]))
}
L <- L[2:t]
model <- sort_components(model)
label <- rep(0, n)
label <- apply(model$R, 1, which.max)
# unique to have consecutive label eg 2,3,6 changed to 1,2,3
# label <- match(label, sort(unique(label)))
if(converged) message(sprintf("Converged in %d steps.\n", t-1)) else
warnings(sprintf("Not converged in %d steps.\n", maxiter))
list(label=label, R=model$R, mu=model$m, full.model=model, L=L)
}
############ Initialization of responsibility (intialization) ############
initialization <- function(X, init) {
d <- nrow(X)
n <- ncol(X)
stopifnot(length(init) %in% c(1, n) ||
(nrow(init) == d & ncol(init) == k))
if(length(init) == 1) { # init = k gaussian components
k <- init
idx <- sample(1:n, k)
m <- X[,idx,drop=F]
label <- apply(bsxfun.se("-", crossprod(m, X),
as.matrix(dot.ext(m,m,1)/2)), 2, which.max)
# unique to have consecutive label eg 2,3,6 changed to 1,2,3
label <- match(label, sort(unique(label)))
while(k != length(unique(label))) {
idx <- sample(1:n, k)
m <- X[,idx,drop=F]
label <- apply(bsxfun.se("-", crossprod(m, X),
as.matrix(dot.ext(m,m,1)/2)), 2, which.max)
label <- match(label, unique(label))
}
R <- as.matrix(sparseMatrix(1:n, label, x=1))
} else {
if(length(init) == n) { # initialize with labels
label <- init
k <- max(label)
R <- as.matrix(sparseMatrix(1:n, label, x=1))
} else {
if(!is.null(dim(init))) {
if(nrow(init) == d & ncol(init) == k) { # initialize with centers
k <- ncol(init)
m <- init
label <- apply(bsxfun.se("-", crossprod(m, X),
as.matrix(dot.ext(m,m,1)/2)), 2, which.max)
R <- as.matrix(sparseMatrix(1:n, label, x=1))
} else stop(message("Invalid init."))
}
}
}
R
}
############ Variational-Maximimization ############
vmax <- function(X, model, prior) {
alpha0 <- prior$alpha
kappa0 <- prior$kappa
m0 <- prior$m;
v0 <- prior$v;
M0 <- prior$M;
R <- model$R;
nk <- apply(R, 2, sum) # 10.51
alpha <- alpha0 + nk # 10.58
nxbar <- X %*% R
kappa <- kappa0 + nk # 10.60
m <- bsxfun.se("*", bsxfun.se("+", nxbar, kappa0 * m0), 1/kappa) # 10.61
v <- v0 + nk # 10.63 (NB: no 1 in the matlab code)
d <- nrow(m)
k <- ncol(m)
M <- array(0, c(d, d, k))
sqrtR <- sqrt(R)
xbar <- bsxfun.se("*", nxbar, 1/nk) # 10.52
xbarm0 <- bsxfun.se("-", xbar, m0)
w <- (kappa0 * nk) * (1/(kappa0 + nk))
for(i in 1:k) {
Xs <- bsxfun.se("*", bsxfun.se("-", X, xbar[,i]), t(sqrtR[,i]))
xbarm0i <- xbarm0[,i]
# 10.62
M[,,i] <- M0 + tcrossprod(Xs, Xs) + w[i] * tcrossprod(xbarm0i, xbarm0i)
}
model$alpha <- alpha
model$kappa <- kappa
model$m <- m
model$v <- v
model$M <- M # Whishart: M = inv(W)
model
}
############ Variational-Expectation ############
vexp <- function(X, model) {
alpha <- model$alpha # Dirichlet
kappa <- model$kappa # Gaussian
m <- model$m # Gasusian
v <- model$v # Whishart
M <- model$M # Whishart: inv(W) = V'*V
n <- ncol(X)
d <- nrow(m)
k <- ncol(m)
logW <- array(0, dim=c(1,k))
EQ <- array(0, dim=c(n,k))
for(i in 1:k) {
U <- chol(M[,,i])
logW[i] <- -2 * sum(log(diag(U)))
Q <- solve(t(U), bsxfun.se("-", X, m[,i]))
EQ[,i] <- d/kappa[i] + v[i] * dot.ext(Q,Q,1) # 10.64
}
vd <- bsxfun.se("-", matrix(rep(v+1, d),nrow=d,byrow=T), as.matrix(1:d))/2
ElogLambda <- colSums(digamma(vd)) + d*log(2) + logW # 10.65
Elogpi <- digamma(alpha) - digamma(sum(alpha)) # 10.66
logRho <- (bsxfun.se("-", EQ, 2*Elogpi + ElogLambda - d*log(2*pi)))/(-2) # 10.46
logR <- bsxfun.se("-", logRho, logsumexp(logRho, 1)) # 10.49
R <- exp(logR)
model$logR <- logR
model$R <- R
model
}
############ Variational-(lower)-Bound Evaluation ############
vbound <- function(X, model, prior) {
alpha0 <- prior$alpha
kappa0 <- prior$kappa
m0 <- prior$m
v0 <- prior$v
M0 <- prior$M
alpha <- model$alpha # Dirichlet
kappa <- model$kappa # Gaussian
m <- model$m # Gasusian
v <- model$v # Whishart
M <- model$M # Whishart: inv(W) = V'*V
R <- model$R
logR <- model$logR
d <- nrow(m)
k <- ncol(m)
nk <- colSums(R) # 10.51
Elogpi <- digamma(alpha) - digamma(sum(alpha)) # 10.66
Epz = dot(nk, Elogpi) # 10.72
Eqz = dot(as.numeric(R), as.numeric(logR)) # 10.75
# logCalpha0 = lgamma(k * alpha0) - k * lgamma(alpha0) # for scalar alpha0
logCalpha0 = lgamma(sum(alpha0)) - sum(lgamma(alpha0))
# Eppi <- logCalpha0+(alpha0-1)*sum(Elogpi) # for scalar alpha0
Eppi <- logCalpha0+dot(alpha0-1, Elogpi) # 10.73
logCalpha <- lgamma(sum(alpha))-sum(lgamma(alpha))
Eqpi = dot(alpha-1, Elogpi) + logCalpha # 10.76
# part of 10.70
L <- Epz - Eqz + Eppi - Eqpi
U0 <- chol(M0)
sqrtR <- sqrt(R)
xbar <- bsxfun.se("*", X %*% R, 1/nk) # 10.52
logW <- array(0, dim = c(1, k))
trSW <- array(0, dim = c(1, k))
trM0W <- array(0, dim = c(1, k))
xbarmWxbarm <- array(0, dim = c(1, k))
mm0Wmm0 <- array(0, dim = c(1, k))
for(i in 1:k) {
U <- chol(M[,,i])
logW[i] <- -2 * sum(log(diag(U)))
Xs <- bsxfun.se("*", bsxfun.se("-", X, as.matrix(xbar[,i,drop=F])), t(sqrtR[,i,drop=F]))
V <- chol(tcrossprod(Xs, Xs)/nk[i])
Q <- solve(U, V)
# equivalent to tr(SW)=trace(S/M)
trSW[i] <- dot(as.numeric(Q), as.numeric(Q))
Q <- solve(U, U0)
trM0W[i] <- dot(as.numeric(Q), as.numeric(Q))
q <- solve(t(U), xbar[,i,drop=F]-m[,i,drop=F])
xbarmWxbarm[i] = dot(q, q)
q <- solve(t(U), m[,i,drop=F]-m0)
mm0Wmm0[i] <- dot(q, q)
}
vd <- bsxfun.se("-", matrix(rep(v+1, d),nrow=d,byrow=T), as.matrix(1:d))/2
ElogLambda <- colSums(digamma(vd)) + d*log(2) + logW # 10.65
# first half of 10.74
Epmu <- sum(d*log(kappa0/(2*pi))+ElogLambda-d*kappa0/kappa-kappa0*(v*mm0Wmm0))/2
logB0 <- v0*sum(log(diag(U0)))-0.5*v0*d*log(2)-logmvgamma(0.5*v0,d) # B.79
# second half of 10.74
EpLambda <- k*logB0+0.5*(v0-d-1)*sum(ElogLambda)-0.5*dot(v,trM0W)
Eqmu <- 0.5*sum(ElogLambda+d*log(kappa/(2*pi)))-0.5*d*k # 10.77 (1/2)
logB <- (-v) * (logW+d*log(2))/2 - logmvgamma(0.5*v, d) # B.79
EqLambda <- 0.5*sum((v-d-1)*ElogLambda-v*d)+sum(logB) # 10.77 (2/2)
EpX <- 0.5*dot(nk, ElogLambda-d/kappa-v*trSW-v*xbarmWxbarm-d*log(2*pi)) # 10.71
L <- L+Epmu-Eqmu+EpLambda-EqLambda+EpX # 10.70
L
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.