Nothing
context("Analyse")
test_that("TCGAanalyze_survival creates pdf", {
clin <- data.frame(
vital_status = c(
"alive",
"alive",
"alive",
"dead",
"alive",
"alive",
"dead",
"alive",
"dead",
"alive"
),
days_to_death = c(NA, NA, NA, 172, NA, NA, 3472, NA, 786, NA),
days_to_last_follow_up = c(3011, 965, 718, NA, 1914, 423, NA, 5, 656, 1417),
gender = c(rep("male", 5), rep("female", 5))
)
TCGAanalyze_survival(clin, clusterCol = "gender", filename = "test.pdf")
expect_true(file.exists("test.pdf"))
unlink("test.pdf")
})
test_that("TCGAanalyze_DMC ask for the missing parameters", {
nrows <- 2
ncols <- 20
counts <- matrix(c(rep(0.9, 20), rep(0.1, 20)), nrows)
rowRanges <- GenomicRanges::GRanges((rep("chr1", 2)),
IRanges::IRanges(c(2000, 2000), width =
100),
strand = c("+", "-"),
feature_id = sprintf("ID%03d", 1:2)
)
colData <-
S4Vectors::DataFrame(
Treatment = rep(c("ChIP", "Input"), 5),
row.names = LETTERS[1:20],
group = rep(c(
"group1", "group2", "group3", "group4"
), c(5, 5, 5, 5))
)
data <- SummarizedExperiment::SummarizedExperiment(
assays = S4Vectors::SimpleList(counts = counts),
rowRanges = rowRanges,
colData = colData
)
expect_null(TCGAanalyze_DMC(data, p.cut = 0.85))
expect_message(TCGAanalyze_DMC(data, p.cut = 0.85),
"Please, set the groupCol parameter")
expect_null(TCGAanalyze_DMC(data, p.cut = 0.85, "group"))
expect_message(
TCGAanalyze_DMC(data, p.cut = 0.85, "group"),
"Please, set the group1 and group2 parameters"
)
})
test_that("TCGAanalyze_DMC is handling NAs correctly", {
nrows <- 2
ncols <- 20
counts <- matrix(c(rep(0.9, 20), rep(0.1, 20)), nrows)
counts[1, 1] <- NA
rowRanges <- GenomicRanges::GRanges((rep("chr1", 2)),
IRanges::IRanges(c(2000, 2000), width =
100),
strand = c("+", "-"),
feature_id = sprintf("ID%03d", 1:2)
)
colData <-
S4Vectors::DataFrame(
Treatment = rep(c("ChIP", "Input"), 5),
row.names = LETTERS[1:20],
group = rep(c("group1", "group2"), c(10, 10))
)
data <- SummarizedExperiment::SummarizedExperiment(
assays = S4Vectors::SimpleList(counts = counts),
rowRanges = rowRanges,
colData = colData
)
SummarizedExperiment::colData(data)$group <-
c(rep("group1", 10), rep("group2", 10))
hypo.hyper <-
TCGAanalyze_DMC(data, p.cut = 0.85, "group", "group1", "group2")
result <- hypo.hyper[1,]
expect_equal(result$mean.group1, 0.9)
expect_equal(result$mean.group2, 0.1)
expect_equal(result$mean.group1.minus.mean.group2 , 0.8)
expect_equal(result$status , "Hypermethylated in group1")
counts[1, ] <- NA
data <- SummarizedExperiment::SummarizedExperiment(
assays = S4Vectors::SimpleList(counts = counts),
rowRanges = rowRanges,
colData = colData
)
expect_error(
TCGAanalyze_DMC(data, p.cut = 0.85, "group", "group1", "group2"),
"Sorry, but we found some probes with NA for all samples in your data, please either remove/or replace them"
)
})
test_that(
"Results of TCGAanalyze_DEA inverting groups changes signal and order of the signals are right",
{
dataNorm <-
TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)
dataFilt <-
TCGAanalyze_Filtering(tabDF = dataBRCA,
method = "quantile",
qnt.cut = 0.25)
# 5 samples
samplesNT <-
TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("NT"))
# 5 samples
samplesTP <-
TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("TP"))
# Get one line for example
A <- rowMeans(dataFilt["CLDN6|9074", samplesNT])
B <- rowMeans(dataFilt["CLDN6|9074", samplesTP])
# Should give the same signal as dataDEGs["CLDN6|9074",]
log2FC <- log2(B) - log2(A)
# Should give the same signal as dataDEGs.inv["CLDN6|9074",]
log2FC.inv <- log2(A) - log2(B)
suppressMessages({
dataDEGs <- TCGAanalyze_DEA(
mat1 = dataFilt[, samplesNT],
mat2 = dataFilt[, samplesTP],
Cond1type = "Normal",
Cond2type = "Tumor"
)
})
expect_equal(dataDEGs["CLDN6|9074", ]$logFC > 0, (log2FC > 0)[[1]])
suppressMessages({
dataDEGs.inv <- TCGAanalyze_DEA(
mat1 = dataFilt[, samplesTP],
mat2 = dataFilt[, samplesNT],
Cond1type = "Tumor",
Cond2type = "Normal"
)
})
expect_equal(dataDEGs$logFC, -1 * dataDEGs.inv$logFC)
expect_equal(dataDEGs.inv["CLDN6|9074", ]$logFC > 0, (log2FC.inv > 0)[[1]])
suppressMessages({
dataDEGs <- TCGAanalyze_DEA(
mat1 = dataFilt[, samplesNT],
mat2 = dataFilt[, samplesTP],
Cond1type = "Normal",
Cond2type = "Tumor",
method = "glmLRT"
)
})
expect_equal(dataDEGs["CLDN6|9074", ]$logFC > 0, (log2FC > 0)[[1]])
suppressMessages({
dataDEGs.inv <- TCGAanalyze_DEA(
mat1 = dataFilt[, samplesTP],
mat2 = dataFilt[, samplesNT],
Cond1type = "Tumor",
Cond2type = "Normal",
method = "glmLRT"
)
})
expect_equal(dataDEGs$logFC, -1 * dataDEGs.inv$logFC)
expect_equal(dataDEGs.inv["CLDN6|9074", ]$logFC > 0, (log2FC.inv > 0)[[1]])
}
)
test_that("Results from TCGAanalyze_DMC are correct", {
nrows <- 2
ncols <- 20
counts <- matrix(c(rep(0.9, 20), rep(0.1, 20)), nrows,
dimnames = list(paste0("cg", 1:2), LETTERS[1:20]))
rowRanges <- GenomicRanges::GRanges((rep("chr1", 2)),
IRanges::IRanges(c(2000, 2000), width =
100),
strand = c("+", "-"),
feature_id = sprintf("ID%03d", 1:2)
)
colData <-
S4Vectors::DataFrame(
Treatment = rep(c("ChIP", "Input"), 5),
row.names = LETTERS[1:20],
group = rep(c("group1", "group2"), c(10, 10))
)
data <- SummarizedExperiment::SummarizedExperiment(
assays = S4Vectors::SimpleList(counts = counts),
rowRanges = rowRanges,
colData = colData
)
SummarizedExperiment::colData(data)$group <-
c(rep("group1", 10), rep("group2", 10))
hypo.hyper <- TCGAanalyze_DMC(data, p.cut = 0.85, "group", "group1", "group2")
result <- hypo.hyper[1,]
expect_equal(result$mean.group1, 0.9)
expect_equal(result$mean.group2, 0.1)
expect_equal(result$mean.group1.minus.mean.group2 , 0.8)
expect_equal(result$status, "Hypermethylated in group1")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.