Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ---- eval = FALSE------------------------------------------------------------
# BiocManager::install("TADCompare")
## ---- echo = FALSE, warning = FALSE, message=FALSE----------------------------
library(dplyr)
library(TADCompare)
## ---- warning=FALSE, message = FALSE------------------------------------------
library(rGREAT)
# Reading in data
data("rao_chr22_prim")
data("rao_chr22_rep")
# Performing differential analysis
results <- TADCompare(rao_chr22_prim, rao_chr22_rep, resolution = 50000)
# Saving the results into its own data frame
TAD_Frame <- results$TAD_Frame
# Filter data to only include complex boundaries enriched in the second
# contact matrix
TAD_Frame <- TAD_Frame %>% dplyr::filter((Type == "Shifted") &
(Enriched_In == "Matrix 2"))
# Assign a chromosome and convert to a bed format
TAD_Frame <- TAD_Frame %>% dplyr::select(Boundary) %>% mutate(chr = "chr22",
start = Boundary, end = Boundary) %>% dplyr::select(chr, start, end)
# Set up rGREAT job with default parameters
great_shift <- submitGreatJob(TAD_Frame, request_interval = 1, version = "2.0")
# Submit the job
enrichment_table <- getEnrichmentTables(great_shift)
# Subset to only include vital information
enrichment_table <- bind_rows(enrichment_table, .id = "source") %>%
dplyr::select(Ontology = source, Description = name,
`P-value` = Hyper_Raw_PValue)
# Print head organizaed by p-values
head(enrichment_table %>% dplyr::arrange(`P-value`))
## ---- warning=FALSE, message = FALSE------------------------------------------
# Read in time course data
data("time_mats")
# Identifying boundaries
results <- TimeCompare(time_mats, resolution = 50000)
# Pulling out the frame of TADs
TAD_Frame <- results$TAD_Bounds
# Getting coordinates for TAD boundaries and converting into bed format
Bound_List <- lapply(unique(TAD_Frame$Category), function(x) {
TAD_Frame %>% filter((Category == x)) %>% mutate(chr = "chr22") %>%
dplyr::select(chr, Coordinate) %>%
mutate(start = Coordinate, end = Coordinate) %>%
dplyr::select(chr, start, end)
})
# Performing rGREAT analysis for each boundary Category
TAD_Enrich <- lapply(Bound_List, function(x) {
getEnrichmentTables(submitGreatJob(x, request_interval = 1, version = "2.0"))
})
# Name list of data frames to keep track of which enrichment belongs to which
names(TAD_Enrich) <- unique(TAD_Frame$Category)
# Bind each category of pathway and create new column for each pathway
TAD_Enrich <- lapply(names(TAD_Enrich), function(x) {
bind_rows(lapply(TAD_Enrich[[x]], function(y) {
y %>% mutate(Category = x)
}), .id = "source")
})
# Bind each boundary category together and pull out important variables
enrichment_table <- bind_rows(TAD_Enrich) %>%
dplyr::select(Ontology = source, Description = name,
`P-value` = Hyper_Raw_PValue, Category)
# Get the top enriched pathways
head(enrichment_table %>% dplyr::arrange(`P-value`))
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.