Nothing
#' Differential TAD boundary detection
#'
#' @import dplyr
#' @import magrittr
#' @import PRIMME
#' @import ggplot2
#' @param cont_mat1 Contact matrix in either sparse 3 column, n x n or
#' n x (n+3) form where the first three columns are coordinates in BED format.
#' See "Input_Data" vignette for more information.
#' If an n x n matrix is used, the column names must correspond to the start
#' point of the corresponding bin. Required.
#' @param cont_mat2 Second contact matrix, used for differential comparison,
#' must be in same format as cont_mat1. Required.
#' @param resolution Resolution of the data. Used to assign TAD boundaries
#' to genomic regions. If not provided, resolution will be estimated from
#' column names of matrix. If matrices are sparse, resolution will be estimated
#' from the column names of the transformed full matrix. Default is "auto"
#' @param z_thresh Threshold for differential boundary score. Higher values
#' result in a higher threshold for differential TAD boundaries. Default is 2.
#' @param window_size Size of sliding window for TAD detection, measured in bins.
#' Results should be consistent regardless of window size. Default is 15.
#' @param gap_thresh Required \% of non-zero interaction frequencies for a
#' given bin to be included in the analysis. Default is .2
#' @param pre_tads A list of pre-defined TADs for testing. Must contain two
#' entries with the first corresponding to TADs detected in matrix 1
#' and the second to those detected in matrix 2. Each entry must contain a BED-like
#' data frame or GenomicRanges object with columns "chr", "start", and "end",
#' corresponding to coordinates of TADs. If provided, differential TAD
#' boundaries are defined only at these coordinates. Optional.
#' @return A list containing differential TAD characteristics
#' \itemize{
#' \item TAD_Frame - Data frame containing any bin where a TAD boundary
#' was detected. Boundary refers to the genomic coordinates, Gap_Score refers
#' to the orresponding differential boundary score. TAD_Score1 and TAD_Score2
#' are boundary scores for cont_mat1 and cont_mat2. Differential is the indicator
#' column whether a boundary is differential. Enriched_In indicates which matrix
#' contains the boundary. Type is the specific type of differential boundary.
#' \item Boundary_Scores - Boundary scores for the entire genome.
#' \item Count_Plot - Stacked barplot containing the number of each type of
#' TAD boundary called by TADCompare
#' }
#' @export
#' @details Given two sparse 3 column, n x n , or n x (n+3) contact matrices,
#' TADCompare identifies differential TAD boundaries. Using a novel boundary
#' score metric, TADCompare simultaneously identifies TAD boundaries (unless
#' provided with the pre-defined TAD boundaries), and tests for the presence
#' of differential boundaries. The magnitude of differences is provided
#' using raw boundary scores and p-values.
#' @examples
#' # Read in data
#' data("rao_chr22_prim")
#' data("rao_chr22_rep")
#' # Find differential TADs
#' diff_frame <- TADCompare(rao_chr22_prim, rao_chr22_rep, resolution = 50000)
TADCompare = function(cont_mat1,
cont_mat2,
resolution = "auto",
z_thresh = 2,
window_size = 15,
gap_thresh = .2,
pre_tads = NULL) {
#Pulling out dimensions to test for matrix type
row_test = dim(cont_mat1)[1]
col_test = dim(cont_mat1)[2]
if (row_test == col_test) {
if (all(is.finite(cont_mat1)) == FALSE) {
stop("Contact matrix 1 contains non-numeric entries")
}
if (all(is.finite(cont_mat2)) == FALSE) {
stop("Contact matrix 2 contains non-numeric entries")
}
}
if (col_test == 3) {
#Convert sparse matrix to n x n matrix
message("Converting to n x n matrix")
if (nrow(cont_mat1) == 1) {
stop("Matrix 1 is too small to convert to full")
}
if (nrow(cont_mat2) == 1) {
stop("Matrix 2 is too small to convert to full")
}
cont_mat1 = HiCcompare::sparse2full(cont_mat1)
cont_mat2 = HiCcompare::sparse2full(cont_mat2)
if (all(is.finite(cont_mat1)) == FALSE) {
stop("Contact matrix 1 contains non-numeric entries")
}
if (all(is.finite(cont_mat2)) == FALSE) {
stop("Contact matrix 2 contains non-numeric entries")
}
if (resolution == "auto") {
message("Estimating resolution")
resolution = as.numeric(names(table(as.numeric(colnames(cont_mat1))-
lag(
as.numeric(
colnames(cont_mat1)
))))[1]
)
}
} else if (col_test-row_test == 3) {
message("Converting to n x n matrix")
#Find the start coordinates based on the second column of the
#bed file portion of matrix
start_coords = cont_mat1[,2]
#Calculate resolution based on given bin size in bed file
resolution = as.numeric(cont_mat1[1,3])-as.numeric(cont_mat1[1,2])
#Remove bed file portion
cont_mat1 = as.matrix(cont_mat1[,-c(seq_len(3))])
cont_mat2 = as.matrix(cont_mat2[,-c(seq_len(3))])
if (all(is.finite(cont_mat1)) == FALSE) {
stop("Contact matrix 1 contains non-numeric entries")
}
if (all(is.finite(cont_mat2)) == FALSE) {
stop("Contact matrix 2 contains non-numeric entries")
}
#Make column names correspond to bin start
colnames(cont_mat1) = start_coords
colnames(cont_mat2) = start_coords
} else if (col_test!=3 & (row_test != col_test) & (col_test-row_test != 3)) {
#Throw error if matrix does not correspond to known matrix type
stop("Contact matrix must be sparse or n x n or n x (n+3)!")
} else if ( (resolution == "auto") & (col_test-row_test == 0) ) {
message("Estimating resolution")
#Estimating resolution based on most common distance between loci
resolution = as.numeric(names(table(as.numeric(colnames(cont_mat1))-
lag(
as.numeric(colnames(cont_mat1))
)))[1])
}
#Make sure contact matrices only include shared columns
coord_sum = list(colnames(cont_mat1), colnames(cont_mat2))
#Only include shared columns in analysis
shared_cols = Reduce(intersect, coord_sum)
cont_mat1 = cont_mat1[colnames(cont_mat1) %in% shared_cols,
colnames(cont_mat1) %in% shared_cols]
cont_mat2 = cont_mat2[colnames(cont_mat2) %in% shared_cols,
colnames(cont_mat2) %in% shared_cols]
#Set maximize size of sliding window
window_size = window_size
#Remove full gaps from matrices
non_gaps = which(colSums(cont_mat1) !=0 & (colSums(cont_mat2) !=0))
#Remove gaps
cont_mat1 = cont_mat1[non_gaps,non_gaps]
cont_mat2 = cont_mat2[non_gaps,non_gaps]
#Defining window size
max_end = window_size
max_size = window_size/ceiling(200000/resolution)
min_size = ceiling(200000/resolution)
Group_over = bind_rows()
start = 1
end = max_end
end_loop = 0
#If window is larger than matrix make it equal to matrix size
if (end+window_size>nrow(cont_mat1)) {
end = nrow(cont_mat1)
}
#Pre-allocate vectors
point_dists1 = c()
point_dists2 = c()
Regions = c()
while (end_loop == 0) {
#Subsetting
sub_filt1 = cont_mat1[seq(start,end,1), seq(start,end,1)]
sub_filt2 = cont_mat2[seq(start,end,1), seq(start,end,1)]
#Removing gap regions from sub_matrices
Per_Zero1 = colSums(sub_filt1 !=0)/nrow(sub_filt1)
Per_Zero2 = colSums(sub_filt2 !=0)/nrow(sub_filt2)
#Remove columns with more zeros than threshold
sub_gaps1 = Per_Zero1>gap_thresh
sub_gaps2 = Per_Zero2>gap_thresh
comp_rows = sub_gaps1 & sub_gaps2
sub_filt1 = sub_filt1[ comp_rows, comp_rows]
sub_filt2 = sub_filt2[ comp_rows, comp_rows]
#Slide window to end if window size is less than 2
if ( (length(sub_filt1) == 0) | (length(sub_filt1) == 1) ) {
start = start+max_end
end = end+max_end
} else {
#Getting degree matrices
dr1 = rowSums(abs(sub_filt1))
dr2 = rowSums(abs(sub_filt2))
#Creating the normalized laplacian
Dinvsqrt1 = diag((1/sqrt(dr1+2e-16)))
Dinvsqrt2 = diag((1/sqrt(dr2+2e-16)))
P_Part1 = crossprod(as.matrix(sub_filt1), Dinvsqrt1)
sub_mat1 = crossprod(Dinvsqrt1, P_Part1)
P_Part2 = crossprod(as.matrix(sub_filt2), Dinvsqrt2)
sub_mat2 = crossprod(Dinvsqrt2, P_Part2)
#Reading names
colnames(sub_mat1) = colnames(sub_mat2) = colnames(sub_filt1)
#Find gaps at 2mb and remove
#Get first two eigenvectors
Eigen1 = PRIMME::eigs_sym(sub_mat1, NEig = 2)
eig_vals1 = Eigen1$values
eig_vecs1 = Eigen1$vectors
#Get order of eigenvalues from largest to smallest
large_small1 = order(-eig_vals1)
eig_vals1 = eig_vals1[large_small1]
eig_vecs1 = eig_vecs1[,large_small1]
#Repeat for matrix 2
Eigen2 = eigs_sym(sub_mat2, NEig = 2)
eig_vals2 = Eigen2$values
eig_vecs2 = Eigen2$vectors
#Get order of eigenvalues from largest to smallest
large_small2 = order(-eig_vals2)
eig_vals2 = eig_vals2[large_small2]
eig_vecs2 = eig_vecs2[,large_small2]
#Normalize the eigenvectors
norm_ones = sqrt(dim(sub_mat1)[2])
for (i in seq_len(dim(eig_vecs1)[2])) {
eig_vecs1[,i] = (eig_vecs1[,i]/sqrt(sum(eig_vecs1[,i]^2))) * norm_ones
if (eig_vecs1[1,i] !=0) {
eig_vecs1[,i] = -1*eig_vecs1[,i] * sign(eig_vecs1[1,i])
}
}
for (i in seq_len(dim(eig_vecs2)[2])) {
eig_vecs2[,i] = (eig_vecs2[,i]/sqrt(sum(eig_vecs2[,i]^2))) * norm_ones
if (eig_vecs2[1,i] !=0) {
eig_vecs2[,i] = -1*eig_vecs2[,i] * sign(eig_vecs2[1,i])
}
}
eps = 2.2204e-16
n = dim(eig_vecs1)[1]
k = dim(eig_vecs1)[2]
#Project eigenvectors onto a unit circle
vm1 = matrix(
kronecker(rep(1,k), as.matrix(sqrt(rowSums(eig_vecs1^2)))),n,k
)
eig_vecs1 = eig_vecs1/vm1
vm2 = matrix(
kronecker(rep(1,k), as.matrix(sqrt(rowSums(eig_vecs2^2)))),n,k
)
eig_vecs2 = eig_vecs2/vm2
#Get distance between points on circle
point_dist1 = sqrt(
rowSums( (eig_vecs1-rbind(NA,eig_vecs1[-nrow(eig_vecs1),]))^2)
)
point_dist2 = sqrt(
rowSums( (eig_vecs2-rbind(NA,eig_vecs2[-nrow(eig_vecs2),]))^2)
)
#Remove NA entry at start of windows
point_dists1 = c(point_dists1, point_dist1[-1])
point_dists2 = c(point_dists2, point_dist2[-1])
#Assign to regions based on column names
Regions = c(Regions, colnames(sub_filt1)[-1])
}
#Test if we've reached end of matrix
if (end == nrow(cont_mat1)) {
end_loop = 1
}
#Set new start and end for window
start = end
end = end+max_end
if ( (end + max_end) >nrow(cont_mat1)) {
end = nrow(cont_mat1)
}
if (start == end | start>nrow(cont_mat1)) {
end_loop = 1
}
}
#Calculating the difference between log gaps
dist_diff = (point_dists1)-(point_dists2)
#Getting the z-scores
sd_diff = (dist_diff-mean(dist_diff, na.rm = TRUE))/(sd(dist_diff,
na.rm = TRUE))
TAD_Score1 = (point_dists1-mean(point_dists1, na.rm = TRUE))/
(sd(point_dists1, na.rm = TRUE))
TAD_Score2 = (point_dists2-mean(point_dists2, na.rm = TRUE))/
(sd(point_dists2, na.rm = TRUE))
#Get areas with high z-scores
gaps = which(abs(sd_diff)>z_thresh)
#Put differential regions into a data frame
diff_loci = data.frame(Region = as.numeric(Regions)[gaps],
Gap_Score = sd_diff[gaps])
#Return differential TAD boundaries
Gap_Scores = data.frame(Boundary = as.numeric(Regions),
TAD_Score1 = TAD_Score1,
TAD_Score2 =TAD_Score2,
Gap_Score = sd_diff)
TAD_Frame = data.frame(Boundary = as.numeric(Regions),
Gap_Score = sd_diff,
TAD_Score1,
TAD_Score2)
#Assign labels to boundary type and identify which matrix has the boundary
if(!is.null(pre_tads)) {
pre_tads = lapply(pre_tads, as.data.frame)
#pre_tads = bind_rows(pre_tads)
TAD_Frame = TAD_Frame %>%
filter(Boundary %in% bind_rows(pre_tads)$end) %>%
mutate(Differential = ifelse(abs(Gap_Score)>z_thresh, "Differential",
"Non-Differential"),
Enriched_In = ifelse(Gap_Score>0, "Matrix 1", "Matrix 2")) %>%
arrange(Boundary) %>%
mutate(Bound_Dist = abs(Boundary-lag(Boundary))/resolution) %>%
mutate(Differential = ifelse( (Differential == "Differential") &
(Bound_Dist<=5) & !is.na(Bound_Dist) &
( Enriched_In!=lag(Enriched_In)) &
(lag(Differential)=="Differential"),
"Shifted", Differential)) %>%
mutate(Differential= ifelse(lead(Differential) == "Shifted", "Shifted",
Differential)) %>%
dplyr::select(-Bound_Dist)
#Pull out non-shared boundaries
} else {
TAD_Frame = TAD_Frame %>%
filter( (TAD_Score1>1.5) | TAD_Score2>1.5) %>%
mutate(Differential = ifelse(abs(Gap_Score)>z_thresh, "Differential",
"Non-Differential"),
Enriched_In = ifelse(Gap_Score>0, "Matrix 1", "Matrix 2")) %>%
arrange(Boundary) %>%
mutate(Bound_Dist = abs(Boundary-lag(Boundary))/resolution) %>%
mutate(Differential = ifelse( (Differential == "Differential") &
(Bound_Dist<=5) & !is.na(Bound_Dist) &
( Enriched_In!=lag(Enriched_In)) &
(lag(Differential)=="Differential"),
"Shifted", Differential)) %>%
mutate(Differential= ifelse(lead(Differential) == "Shifted", "Shifted",
Differential)) %>%
dplyr::select(-Bound_Dist)
}
#Classifying merged-split
TAD_Frame = TAD_Frame %>%
mutate(Type = ifelse( (Differential == "Differential") &
(lag(Differential) == "Non-Differential") &
(lead(Differential) == "Non-Differential"),
ifelse(Enriched_In == "Matrix 1", "Split", "Merge"),
Differential))
#Add up-down enrichment of TAD boundaries
TAD_Frame = TAD_Frame %>%
mutate(Type = ifelse( (TAD_Score1>1.5) &
(TAD_Score2>1.5) &
(Differential == "Differential"),
"Strength Change", Type))
#Classify leftovers as complex
TAD_Frame = TAD_Frame %>% mutate(Type = gsub("^Differential$",
"Complex", Type))
#Another step for pre-specified
if (!is.null(pre_tads)) {
#Pulling out shared ends by overlap
shared_ends = ((TAD_Frame$Boundary %in%
pre_tads[[1]]$end + TAD_Frame$Boundary %in%
pre_tads[[2]]$end)==1)
#Converting non-differential to non-overlap
TAD_Frame = TAD_Frame %>% mutate(Type = ifelse(
(shared_ends == TRUE)&(Type=="Non-Differential"),
"Non-Overlap", Type))
}
#Redo for gap score frame as well
#Assign labels to boundary type and identify which matrix has the boundary
Gap_Scores = Gap_Scores %>%
mutate(Differential = ifelse(abs(Gap_Score)>z_thresh, "Differential",
"Non-Differential"),
Enriched_In = ifelse(Gap_Score>0, "Matrix 1", "Matrix 2")) %>%
arrange(Boundary) %>%
mutate(Bound_Dist = pmin(abs(Boundary-lag(Boundary))/resolution,
abs((Boundary-lead(Boundary)))/resolution)) %>%
mutate(Differential = ifelse( (Differential == "Differential") &
(Bound_Dist<=5) & !is.na(Bound_Dist),
"Shifted", Differential)) %>%
dplyr::select(-Bound_Dist)
#Classifying merged-split
Gap_Scores = Gap_Scores %>%
mutate(Type = ifelse( (Differential == "Differential") &
(lag(Differential) == "Non-Differential") &
(lead(Differential) == "Non-Differential"),
ifelse(Enriched_In == "Matrix 1", "Split", "Merge"),
Differential))
#Add up-down enrichment of TAD boundaries
Gap_Scores = Gap_Scores %>%
mutate(Type = ifelse( (TAD_Score1>1.5) &
(TAD_Score2>1.5) &
(Differential == "Differential"),
"Strength Change", Type))
#Classify leftovers as complex
Gap_Scores = Gap_Scores %>% mutate(Type = gsub("^Differential$",
"Complex", Type))
TAD_Sum = TAD_Frame %>% group_by(Type) %>% summarise(Count = n())
#Fix double counting of shifted boundaries
TAD_Sum = TAD_Sum %>% mutate(Count = ifelse(Type == "Shifted",
Count/2,
Count))
Count_Plot = ggplot2::ggplot(TAD_Sum,
aes(x = 1,
y = Count, fill = Type)) +
geom_bar(stat="identity") + theme_bw(base_size = 24) +
theme(axis.title.x = element_blank(), panel.grid = element_blank(),
axis.text.x = element_blank(), axis.ticks.x = element_blank()) +
labs(y = "Number of Boundaries")
return(list(TAD_Frame =TAD_Frame,
Boundary_Scores = Gap_Scores,
Count_Plot = Count_Plot ))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.