Nothing
## ----echo=FALSE, include=FALSE------------------------------------------------
knitr::opts_chunk$set(tidy = FALSE,
cache = TRUE,
dev = "png",
message = FALSE,
error = FALSE,
warning = TRUE)
## -----------------------------------------------------------------------------
library("SummarizedBenchmark")
library("magrittr")
## ----load-fluidigm-data-------------------------------------------------------
library("splatter")
library("scRNAseq")
fluidigm <- ReprocessedFluidigmData()
se <- fluidigm[, colData(fluidigm)[, "Coverage_Type"] == "High"]
assays(se) <- assays(se)["rsem_counts"]
assayNames(se) <- "counts"
## ----subset-data--------------------------------------------------------------
set.seed(1912)
se <- se[sample(nrow(se), 1e4), sample(ncol(se), 20)]
## ----convert-to-sce-----------------------------------------------------------
sce <- as(se, "SingleCellExperiment")
## ----construct-sim-benchdesign------------------------------------------------
bd <- BenchDesign() %>%
addMethod(label = "splat",
func = splatSimulate,
params = rlang::quos(params = splatEstimate(in_data),
verbose = in_verbose,
seed = in_seed)) %>%
addMethod(label = "simple",
func = simpleSimulate,
params = rlang::quos(params = simpleEstimate(in_data),
verbose = in_verbose,
seed = in_seed)) %>%
addMethod(label = "lun",
func = lunSimulate,
params = rlang::quos(params = lunEstimate(in_data),
verbose = in_verbose,
seed = in_seed))
## ----run-sim-buildbench-------------------------------------------------------
fluidigm_dat <- list(in_data = assay(sce, "counts"),
in_verbose = FALSE,
in_seed = 19120128)
sb <- buildBench(bd, data = fluidigm_dat)
sb
## ----check-buildbench-results-------------------------------------------------
assay(sb)
sapply(assay(sb), class)
## ----compute-sim-result-comparison--------------------------------------------
res_compare <- compareSCEs(c(ref = sce, assay(sb)[1, ]))
res_diff <- diffSCEs(c(ref = sce, assay(sb)[1, ]), ref = "ref")
## ----plot-sim-result-comparison-----------------------------------------------
res_compare$Plots$MeanVar
res_diff$Plots$MeanVar
## ----add-performance-metrics--------------------------------------------------
sb <- sb %>%
addPerformanceMetric(
assay = "default",
evalMetric = "zerosPerCell",
evalFunction = function(query, truth) {
colMeans(assay(query[[1]], "counts") == 0)
}) %>%
addPerformanceMetric(
assay = "default",
evalMetric = "zerosPerGene",
evalFunction = function(query, truth) {
rowMeans(assay(query[[1]], "counts") == 0)
} )
## ----compute-performance-metrics----------------------------------------------
sbmets <- estimatePerformanceMetrics(sb, tidy = TRUE)
sbmets <- dplyr::select(sbmets, label, value, performanceMetric)
head(sbmets)
## ----check-performance-metrics------------------------------------------------
sbmets <- tidyr::unnest(sbmets)
head(sbmets)
## ----plot-performace-metrics--------------------------------------------------
ggplot(sbmets, aes(x = label, y = value,
color = label, fill = label)) +
geom_boxplot(alpha = 1/2) +
xlab("method") +
scale_color_discrete("method") +
scale_fill_discrete("method") +
facet_grid(performanceMetric ~ .) +
theme_bw()
## ----analyze-new-data---------------------------------------------------------
library(scater)
scec <- mockSCE()
scater_dat <- list(in_data = scec,
in_verbose = FALSE,
in_seed = 19120128)
buildBench(bd, data = scater_dat)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.