Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
options(mc.cores=2)
## ---- echo=FALSE, eval=TRUE, results='hide'-----------------------------------
library(SingleCellSignalR)
data(example_dataset, package = "SingleCellSignalR")
data = example_dataset
genes = data$genes
rownames(data) = genes
data = data[,-1]
## ---- echo=TRUE, eval=FALSE---------------------------------------------------
# clust <- clustering(data = data, n.cluster = 4, n = 10, method = "simlr",write = FALSE,pdf=FALSE)
## ---- echo=FALSE, eval=TRUE---------------------------------------------------
clust <- clustering(data = data,n.cluster = 4, n = 10, method = "kmeans",write = FALSE,pdf=FALSE)
## ---- eval=TRUE, results='hide'-----------------------------------------------
clust.ana <- cluster_analysis(data = data, genes = rownames(data), cluster = clust$cluster, write = FALSE)
## ---- eval=TRUE---------------------------------------------------------------
signal <- cell_signaling(data = data, genes = rownames(data), cluster = clust$cluster, write = FALSE)
## ---- eval=TRUE---------------------------------------------------------------
inter.net <- inter_network(data = data, signal = signal, genes = genes, cluster = clust$cluster, write = FALSE)
## ---- eval=TRUE---------------------------------------------------------------
visualize_interactions(signal = signal)
## ---- eval=TRUE---------------------------------------------------------------
visualize_interactions(signal = signal,show.in=c(1,4))
## ---- echo=FALSE, eval=TRUE, results='hide'-----------------------------------
data(example_dataset, package = "SingleCellSignalR")
data = example_dataset
genes = data$genes
rownames(data) = genes
data = data[,-1]
## ---- eval=TRUE, results='hide'-----------------------------------------------
class = cell_classifier(data=data, genes=rownames(data), markers = markers(c("immune")), tsne=clust$`t-SNE`,plot.details=TRUE,write = FALSE)
## ---- eval=TRUE, results='hide'-----------------------------------------------
# Define the cluster vector and the cluster names
cluster <- class$cluster
c.names <- class$c.names
# Remove undefined cells
data <- data[,cluster!=(max(cluster))]
tsne <- clust$`t-SNE`[cluster!=(max(cluster)),]
c.names <- c.names[-max(cluster)]
cluster <- cluster[cluster!=(max(cluster))]
## ---- eval=TRUE---------------------------------------------------------------
clust.ana <- cluster_analysis(data = data, genes = rownames(data), cluster = cluster, c.names = c.names, write = FALSE)
## ---- eval=TRUE---------------------------------------------------------------
signal <- cell_signaling(data = data, genes = genes, cluster = cluster, c.names = c.names, write = FALSE)
inter.net <- inter_network(data = data, signal = signal, genes = genes, cluster = cluster, write = FALSE)
## ---- eval=TRUE---------------------------------------------------------------
signal[[6]]
## ---- eval=FALSE--------------------------------------------------------------
# intra = intra_network(goi = "ASGR1",data = data,genes = rownames(data),cluster = cluster, coi = "Macrophages", c.names = c.names, signal = signal,write=FALSE)
## ---- eval=TRUE---------------------------------------------------------------
visualize_interactions(signal)
## ---- eval=TRUE---------------------------------------------------------------
visualize_interactions(signal, show.in=c(1,6))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.