R/Inbreeding.R

Defines functions Inbreeding

Documented in Inbreeding

#' Sample inbreeding check with SeqSQC object input file.
#'
#' Function to calculate population-specific inbreeding coefficients,
#' and to predict inbreeding outliers that are five standard deviation
#' beyond the mean.
#' @param seqfile SeqSQC object, which includes the merged gds file
#'     for study cohort and benchmark.
#' @param remove.samples a vector of sample names for removal from
#'     inbreeding coefficient calculation. Could be problematic
#'     samples identified from previous QC steps, or user-defined
#'     samples.
#' @param LDprune whether to use LD-pruned snp set. The default is
#'     TRUE.
#' 
#' @param missing.rate to use the SNPs with "<= \code{missing.rate}"
#'     only; if NaN, no threshold. By default, we use
#'     \code{missing.rate = 0.1} to filter out variants with missing
#'     rate greater than 10\%.
#' @param ss.cutoff the minimum sample size (300 by default) to apply
#'     the MAF filter. This sample size is the sum of study samples
#'     and the benchmark samples of the same population as the study
#'     cohort.
#' @param maf to use the SNPs with ">= \code{maf}" if sample size
#'     defined in above argument is greater than \code{ss.cutoff};
#'     otherwise NaN is used by default for no MAF threshold.
#' @param hwe to use the SNPs with Hardy-Weinberg equilibrium p >=
#'     \code{hwe} if sample size defined in above argument is greater
#'     than \code{ss.cutoff}; otherwise no hwe threshold. The default
#'     is 1e-6.
#' @param ... Arguments to be passed to other methods.
#' @keywords inbreeding
#' @return a data frame with sample name, inbreeding coefficient, and
#'     an indicator of whether the inbreeding coefficient is five
#'     standard deviation beyond the mean.
#' @details Using LD-pruned variants (by default), we calculate the
#'     inbreeding coefficients for each sample in the study cohort and
#'     for benchmark samples of the same population as the study
#'     cohort. Samples with inbreeding coefficients that are five
#'     standard deviations beyond the mean are considered problematic
#'     and are shown as "Yes" in the column of
#'     \code{outlier.5sd}. Benchmark samples in this column are set to
#'     be “NA”.
#' @export
#' @examples
#' load(system.file("extdata", "example.seqfile.Rdata", package="SeqSQC"))
#' gfile <- system.file("extdata", "example.gds", package="SeqSQC")
#' seqfile <- SeqSQC(gdsfile = gfile, QCresult = QCresult(seqfile))
#' seqfile <- Inbreeding(seqfile, remove.samples=NULL, LDprune=TRUE, missing.rate=0.1)
#' res.inb <- QCresult(seqfile)$Inbreeding
#' tail(res.inb)
#' @author Qian Liu \email{qliu7@@buffalo.edu}

Inbreeding <- function(seqfile, remove.samples=NULL, LDprune=TRUE,
                       missing.rate=0.1, ss.cutoff = 300, maf = 0.01,
                       hwe = 1e-6, ...){

    ## check
    if (!inherits(seqfile, "SeqSQC")){
        return("object should inherit from 'SeqSQC'.")
    }
    message("calculating inbreeding coefficients ...")
    
    gfile <- SeqOpen(seqfile, readonly=TRUE)
    
    nds <- c("sample.id", "sample.annot", "snp.id") 
    allnds <- lapply(nds, function(x) read.gdsn(index.gdsn(gfile, x)))
    names(allnds) <- c("samples", "sampleanno", "snp.id")
    
    ## sample filters. (remove prespecified "remove.samples", and only
    ## keep samples within the study population)
    study.pop <- unique(allnds$sampleanno[allnds$sampleanno$group == "study", "population"])
    if (length(study.pop) > 1)
        stop("Study samples should be single population, please prepare input file accordingly.")
    
    if(study.pop == "ASN") study.pop <- c("EAS", "SAS", "ASN")
    
    if(!is.null(remove.samples)){
        flag <- allnds$sampleanno$population %in% study.pop & !allnds$samples %in% remove.samples
    }else{
        flag <- allnds$sampleanno$population %in% study.pop
    }
    sample.inb <- allnds$samples[flag]
    
    ## calculate population-specific inbreeding coefficient.

    ## add hwe filter for variants when sample size >= 300.
    if (length(sample.inb) >= ss.cutoff){
        snp.hwe <- snpgdsHWE(gfile, sample.id=sample.inb)
        hwe.idx <- snp.hwe > hwe & !is.na(snp.hwe)
    }else{
        hwe.idx <- rep(TRUE, length(allnds$snp.id))
    }
    
    ## use LDpruned SNPs if LDprune == TRUE.
    if(LDprune){
        ld <- read.gdsn(index.gdsn(gfile, "snp.annot/LDprune"))
    }else{
        ld <- rep(TRUE, length(allnds$snp.id))
    }
    
    ## SNP filters in together. (HWE+LDprune)
    snp.idx <- ld & hwe.idx
    
    ## use maf filter if sample size >= 300.
    if (length(sample.inb) >= ss.cutoff){ 
        rv <- snpgdsIndInb(gfile, snp.id=allnds$snp.id[snp.idx],
                           sample.id=sample.inb, maf=maf,
                           missing.rate=missing.rate, ...)
    }else{
        rv <- snpgdsIndInb(gfile, snp.id=allnds$snp.id[snp.idx],
                           sample.id=sample.inb, maf=NaN,
                           missing.rate=missing.rate, ...)
    }
    closefn.gds(gfile)
        
    ## outliers
    m <- mean(rv$inbreeding)
    s <- sd(rv$inbreeding)
    coef <- 5
    outlier.5sd <- ifelse(rv$inbreeding < m-coef*s | rv$inbreeding > m+coef*s,
                          "Yes", "No")
    
    res.inb <- data.frame(sample=sample.inb,
                          inbreeding=rv$inbreeding, outlier.5sd,
                          stringsAsFactors=FALSE)

    ## set all outlier.* to be "NA" for 1000g benchmark samples. (We
    ## only use the 1000g samples to help identify inbreeding outliers
    ## from study cohort, and calculate inbreeding coef together with
    ## study samples within the sample population)
    skip.idx <- allnds$sampleanno[match(sample.inb, allnds$sampleanno$sample), 5] != "study"
    res.inb[skip.idx, "outlier.5sd"] <- NA
    
    ## return the SeqSQC file with updated QC results.
    a <- QCresult(seqfile)
    a$Inbreeding <- res.inb
    outfile <- SeqSQC(gdsfile = gdsfile(seqfile), QCresult = a)
    return(outfile)
}

Try the SeqSQC package in your browser

Any scripts or data that you put into this service are public.

SeqSQC documentation built on Nov. 8, 2020, 5:03 p.m.