R/assess_fdr_byrun.R

Defines functions assess_fdr_byrun

Documented in assess_fdr_byrun

#' Assess assay, peptide and protein level FDR by run (for each MS_injection
#' separately) in OpenSWATH output table
#'
#' This function estimates the assay, peptide and protein FDR by run in an
#' OpenSWATH result table in dependence of a range of m_score cutoffs. The
#' results can be visualized and summarized by the associated method
#' plot.fdr_table().
#' It counts target and decoy assays (unique transition_group_id), peptides
#' (unique FullPeptideName) and proteins (unique ProteinName) in the OpenSWATH
#' output table in dependence of m-score cutoff, the useful m_score cutoff range
#' is evaluated for each dataset individually on the fly.
#' To arrive from decoy counts at an estimation of the false discovery rate
#' (false positives among the targets remaining at a given mscore cutoff) the
#' ratio of false positives to true negatives (decoys) (FFT) must be
#' supplied. It is estimated for each run individually by pyProphet and
#' contained in the pyProphet statistics [Injection_name]_full_stat.csv. As an
#' approximation, the FFTs of multiple runs are averaged and supplied as
#' argument FFT. For further details see the Vignette Section 1.3 and 4.1.
#' To assess fdr over the entire dataset, please refer to function
#' assess_fdr_overall. FDR is calculated as FDR = (TN*FFT/T); TN=decoys,
#' T=targets, FFT=see above.
#'
#' @param data Annotated OpenSWATH/pyProphet output table. Refer to function
#'   sample_annotation from this package for further information.
#' @param FFT Ratio of false positives to true negatives, q-values from
#'   [Injection_name]_full_stat.csv in pyProphet stats output. As an
#'   approximation, the q-values of multiple runs are averaged and supplied as
#'   argument FFT. Numeric from 0 to 1. Defaults to 1, the most conservative
#'   value (1 Decoy indicates 1 False target).
#' @param n_range  Option to set the number of magnitude for which the m_score
#'   threshold is decreased (e.g. n_range = 10, m-score from 0.1 until
#'   10^-10)^.
#' @param output Choose output type. "pdf_csv" creates the output as files in
#'   the working directory, "Rconsole" triggers delivery of the output to the
#'   console enabling further computation or custom plotting / output.
#' @param plot Logical, whether or not to create plots from the results (using
#'   the associated method plot.fdr_cube()
#' @param filename  Modify the basename of the result files if set.
#' @param output_mscore_levels Define m-score levels to plot and write the
#'   estimated FDR results.
#' @param score_col Column that contains the score. Default. m_score 
#' @return Returns an array of target/decoy identification numbers and
#'   calculated FDR values at different m-score cutoffs.
#' @author Moritz Heusel
#' @examples{
#'  data("OpenSWATH_data", package="SWATH2stats")
#'  data("Study_design", package="SWATH2stats")
#'  data <- sample_annotation(OpenSWATH_data, Study_design)
#'  assessed <- assess_fdr_byrun(data, FFT=0.7, output="Rconsole", plot=TRUE,
#'                               filename="Testoutput_assess_fdr_byrun")
#'  summary(assessed)
#'  }
#' @importFrom utils write.csv
#' @export

assess_fdr_byrun <- function(data, 
                             FFT = 1, 
                             n_range = 20, 
                             output = "pdf_csv", 
                             plot = TRUE,
                             filename = "FDR_report_byrun", 
                             output_mscore_levels = c(0.01, 0.001), 
                             score_col = "m_score") {
    score_col <- JPP_update(data, score_col)

    # create m_score intervals to be tested
    test_levels <- 10^-seq_len(n_range)

    ## Identify the minimal m-score cutoff at which all runs still contain decoys
    decoy_count_lengths <- NULL
    for (i in seq_len(n_range)) {
    decoy_count_lengths[i] <- length(by(data[data$decoy == TRUE & data[,score_col] <= test_levels[i],
        c("transition_group_id")], data[data$decoy == TRUE & data[,score_col] <= test_levels[i], c("run_id")], length))
    }

    mscore_limit <- length(decoy_count_lengths[decoy_count_lengths == length(unique(data$run_id))])
    if (mscore_limit < 2) {
        mscore_limit <- 2
    }

    mscore_levels <- 10^-c(seq(2, mscore_limit))
    output_mscore_levels <- output_mscore_levels[output_mscore_levels %in% mscore_levels]

    fdr_cube <- array(NA, dim = c(12, length(unique(data$run_id)), length(mscore_levels)))

    dimnames(fdr_cube) <- list(c("target_assays", "decoy_assays", "false_target_assays",
        "assay_fdr", "target_peptides", "decoy_peptides", "false_target_peptides",
        "peptide_fdr", "target_proteins", "decoy_proteins", "false_target_proteins",
        "protein_fdr"), sort(unique(data$run_id)), mscore_levels)

    length_unique <- function(X) {
        length(unique(X))
    }

    data.t <- data[data$decoy == 0, ]
    data.d <- data[data$decoy == 1, ]

    # for each m_score cutoff in mscore_levels, count targets and decoys and
    # calculate false targets and fdr
    for (i in seq_len(length(mscore_levels))) {
        # for each run_id, count target (and decoy) assays identified ('id' column
        # entries) and store in pane i /row 1 (targets) /row 2 (decoys) & calculate false
        # targets & fdr based on FFT
        fdr_cube[1, , i] <- by(data.t[data.t[, score_col] <= mscore_levels[i], c("transition_group_id")],
            data.t[data.t[, score_col] <= mscore_levels[i], c("run_id")], length)
        fdr_cube[2, , i] <- by(data.d[data.d[, score_col] <= mscore_levels[i], c("transition_group_id")],
            data.d[data.d[, score_col] <= mscore_levels[i], c("run_id")], length)
        fdr_cube[3, , i] <- fdr_cube[2, , i] * FFT
        fdr_cube[4, , i] <- fdr_cube[3, , i]/fdr_cube[1, , i]

        # for each run_id, count target (and decoy) peptides identified (unique
        # 'FullPeptideName' column entries) and store in pane i /row 1 (targets) /row 2
        # (decoys) & calculate false targets & fdr based on FFT
        fdr_cube[5, , i] <- by(data.t[data.t[, score_col] <= mscore_levels[i], c("FullPeptideName")],
            data.t[data.t[, score_col] <= mscore_levels[i], c("run_id")], length_unique)
        fdr_cube[6, , i] <- by(data.d[data.d[, score_col] <= mscore_levels[i], c("FullPeptideName")],
            data.d[data.d[, score_col] <= mscore_levels[i], c("run_id")], length_unique)
        fdr_cube[7, , i] <- fdr_cube[6, , i] * FFT
        fdr_cube[8, , i] <- fdr_cube[7, , i]/fdr_cube[5, , i]

        # for each run_id, count target (and decoy) proteins identified (unique
        # 'ProteinName' column entries) and store in pane i /row 1 (targets) /row 2
        # (decoys) & calculate false targets & fdr based on FFT
        fdr_cube[9, , i] <- by(data.t[data.t[, score_col] <= mscore_levels[i], c("ProteinName")],
            data.t[data.t[, score_col] <= mscore_levels[i], c("run_id")], length_unique)
    fdr_cube[10, , i] <- by(data.d[data.d[,score_col] <= mscore_levels[i], c("ProteinName")],
                            data.d[data.d[,score_col] <= mscore_levels[i], c("run_id")], length_unique)
        fdr_cube[11, , i] <- fdr_cube[10, , i] * FFT
        fdr_cube[12, , i] <- fdr_cube[11, , i]/fdr_cube[9, , i]
    }

    # print fdr values to console (m_score cutoff 1e-2)
  message("The average FDR by run on assay level is ", 
          round(mean(fdr_cube[4, , 1], na.rm=TRUE), digits=3), "\n")
  message("The average FDR by run on peptide level is ", 
          round(mean(fdr_cube[8, , 1], na.rm=TRUE), digits=3), "\n")
  message("The average FDR by run on protein level is ", 
          round(mean(fdr_cube[12, , 1], na.rm=TRUE), digits=3), "\n")

    if (output == "pdf_csv") {
    message("Individual run FDR qualities can be retrieved from ", 
            paste(filename, ".csv"), "\n", sep="")
        # Write csv reports for mscore 1e-2 and 1e-3

        for (i in output_mscore_levels) {
            k.mscore <- which(dimnames(fdr_cube)[[3]] == i)
            k.mscore.label <- as.numeric(dimnames(fdr_cube)[[3]][k.mscore])
            write.csv(fdr_cube[, , k.mscore], file = paste(filename, "table_mscore_",
                format(k.mscore.label, scientific = TRUE), ".csv", sep = ""))
        }
        message(filename, ".csv reports written to working folder", "\n")
    }

    fdr_cube2 <- fdr_cube
    class(fdr_cube2) <- "fdr_cube"

    if (isTRUE(plot)) {
    plot.fdr_cube(fdr_cube2, output = output, filename = filename, 
                  plot_mscore_levels = output_mscore_levels)
    }

    if (output == "Rconsole") {
        return(fdr_cube2)
    }

}

Try the SWATH2stats package in your browser

Any scripts or data that you put into this service are public.

SWATH2stats documentation built on April 17, 2021, 6:01 p.m.