Nothing
## ----load_files, message=FALSE------------------------------------------------
library("SIAMCAT")
data("feat_crc_zeller", package="SIAMCAT")
data("meta_crc_zeller", package="SIAMCAT")
## ----show_features------------------------------------------------------------
feat.crc.zeller[1:3, 1:3]
dim(feat.crc.zeller)
## ----show_meta----------------------------------------------------------------
head(meta.crc.zeller)
## ----create_label-------------------------------------------------------------
label.crc.zeller <- create.label(meta=meta.crc.zeller,
label='Group', case='CRC')
## ----start--------------------------------------------------------------------
sc.obj <- siamcat(feat=feat.crc.zeller,
label=label.crc.zeller,
meta=meta.crc.zeller)
## ----show_siamcat-------------------------------------------------------------
show(sc.obj)
## ----filter_feat--------------------------------------------------------------
sc.obj <- filter.features(sc.obj,
filter.method = 'abundance',
cutoff = 0.001)
## ----check_associations, eval=FALSE-------------------------------------------
# sc.obj <- check.associations(
# sc.obj,
# sort.by = 'fc',
# alpha = 0.05,
# mult.corr = "fdr",
# detect.lim = 10 ^-6,
# plot.type = "quantile.box",
# panels = c("fc", "prevalence", "auroc"))
## ----normalize_feat-----------------------------------------------------------
sc.obj <- normalize.features(
sc.obj,
norm.method = "log.unit",
norm.param = list(
log.n0 = 1e-06,
n.p = 2,
norm.margin = 1
)
)
## ----data_split---------------------------------------------------------------
sc.obj <- create.data.split(
sc.obj,
num.folds = 5,
num.resample = 2
)
## ----train_model, message=FALSE, results='hide'-------------------------------
sc.obj <- train.model(
sc.obj,
method = "lasso"
)
## ----show_models--------------------------------------------------------------
# get information about the model type
model_type(sc.obj)
# access the models
models <- models(sc.obj)
models[[1]]
## ----make_predictions, message=FALSE, results='hide'--------------------------
sc.obj <- make.predictions(sc.obj)
pred_matrix <- pred_matrix(sc.obj)
## ----pred_matrix_head---------------------------------------------------------
head(pred_matrix)
## ----eval_predictions---------------------------------------------------------
sc.obj <- evaluate.predictions(sc.obj)
## ----eval_plot, eval=FALSE----------------------------------------------------
# model.evaluation.plot(sc.obj)
## ----eval=FALSE---------------------------------------------------------------
# model.interpretation.plot(
# sc.obj,
# fn.plot = 'interpretation.pdf',
# consens.thres = 0.5,
# norm.models = TRUE,
# limits = c(-3, 3),
# heatmap.type = 'zscore',
# )
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.