Nothing
## ----style-knitr, eval=TRUE, echo=FALSE, results="asis"--------------------
BiocStyle::latex()
## ----eval=FALSE, echo=TRUE-------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("SCnorm")
## ----eval=FALSE, echo=TRUE-------------------------------------------------
# install.packages("SCnorm_x.x.x.tar.gz", repos=NULL, type="source")
# #OR
# library(devtools)
# devtools::install_github("rhondabacher/SCnorm", ref="devel")
## ----eval=TRUE, echo=TRUE,warning=FALSE------------------------------------
library(SCnorm)
## ----eval=TRUE-------------------------------------------------------------
data(ExampleSimSCData)
ExampleSimSCData[1:5,1:5]
str(ExampleSimSCData)
## ----eval=TRUE-------------------------------------------------------------
ExampleSimSCData <- SingleCellExperiment::SingleCellExperiment(assays = list('counts' = ExampleSimSCData))
## ----eval=FALSE------------------------------------------------------------
# ExampleSimSCData <- as(ExampleSimSCData, "SingleCellExperiment")
## ----eval=TRUE-------------------------------------------------------------
Conditions = rep(c(1), each= 90)
head(Conditions)
## ----eval=TRUE-------------------------------------------------------------
pdf("check_exampleData_count-depth_evaluation.pdf", height=5, width=7)
countDeptEst <- plotCountDepth(Data = ExampleSimSCData, Conditions = Conditions,
FilterCellProportion = .1, NCores=3)
dev.off()
str(countDeptEst)
head(countDeptEst[[1]])
## ----eval=TRUE, fig.height=5, fig.width=7, fig.align='center', out.width='0.4\\textwidth'----
ExampleSimSCData = SingleCellExperiment::counts(ExampleSimSCData)
# Total Count normalization, Counts Per Million, CPM.
ExampleSimSCData.CPM <- t((t(ExampleSimSCData) / colSums(ExampleSimSCData)) *
mean(colSums(ExampleSimSCData)))
countDeptEst.CPM <- plotCountDepth(Data = ExampleSimSCData,
NormalizedData = ExampleSimSCData.CPM,
Conditions = Conditions,
FilterCellProportion = .1, NCores=3)
str(countDeptEst.CPM)
head(countDeptEst.CPM[[1]])
## ----eval=TRUE-------------------------------------------------------------
Conditions = rep(c(1), each= 90)
pdf("MyNormalizedData_k_evaluation.pdf")
par(mfrow=c(2,2))
DataNorm <- SCnorm(Data = ExampleSimSCData,
Conditions = Conditions,
PrintProgressPlots = TRUE,
FilterCellNum = 10, K = 1,
NCores=3, reportSF = TRUE)
dev.off()
DataNorm
NormalizedData <- SingleCellExperiment::normcounts(DataNorm)
NormalizedData[1:5,1:5]
## ----eval=TRUE-------------------------------------------------------------
GenesNotNormalized <- results(DataNorm, type="GenesFilteredOut")
str(GenesNotNormalized)
## ----eval=TRUE-------------------------------------------------------------
ScaleFactors <- results(DataNorm, type="ScaleFactors")
str(ScaleFactors)
## ----eval=TRUE, fig.height=5, fig.width=7, fig.align='center', out.width='0.4\\textwidth'----
countDeptEst.SCNORM <- plotCountDepth(Data = ExampleSimSCData,
NormalizedData = NormalizedData,
Conditions = Conditions,
FilterCellProportion = .1, NCores=3)
str(countDeptEst.SCNORM)
head(countDeptEst.SCNORM[[1]])
## ----eval=FALSE------------------------------------------------------------
# Conditions = rep(c(1, 2), each= 90)
# DataNorm <- SCnorm(Data = MultiCondData,
# Conditions = Conditions,
# PrintProgressPlots = TRUE,
# FilterCellNum = 10,
# NCores=3,
# useZerosToScale=TRUE)
## ----eval=FALSE------------------------------------------------------------
#
# DataNorm1 <- SCnorm(Data = ExampleSimSCData[,1:45],
# Conditions = rep("1", 45),
# PrintProgressPlots = TRUE,
# FilterCellNum = 10,
# NCores=3, reportSF = TRUE)
#
#
# DataNorm2 <- SCnorm(Data = ExampleSimSCData[,46:90],
# Conditions = rep("2", 45),
# PrintProgressPlots = TRUE,
# FilterCellNum = 10,
# NCores=3, reportSF = TRUE)
## ----eval=FALSE------------------------------------------------------------
# normalizedDataSet1 <- results(DataNorm1, type = "NormalizedData")
# normalizedDataSet2 <- results(DataNorm2, type = "NormalizedData")
#
# NormList <- list(list(NormData = normalizedDataSet1),
# list(NormData = normalizedDataSet2))
# OrigData <- ExampleSimSCData
# Genes <- rownames(ExampleSimSCData)
# useSpikes = FALSE
# useZerosToScale = FALSE
#
# DataNorm <- scaleNormMultCont(NormData = NormList,
# OrigData = OrigData,
# Genes = Genes, useSpikes = useSpikes,
# useZerosToScale = useZerosToScale)
#
#
# str(DataNorm$ScaledData)
# myNormalizedData <- DataNorm$ScaledData
## ----eval=FALSE------------------------------------------------------------
# checkCountDepth(Data = umiData, Conditions = Conditions,
# FilterCellProportion = .1, FilterExpression = 2)
#
# DataNorm <- SCnorm(Data = umiData, Conditions= Conditions,
# PrintProgressPlots = TRUE,
# FilterCellNum = 10,
# PropToUse = .1,
# Thresh = .1,
# ditherCounts = TRUE)
## ----eval=FALSE------------------------------------------------------------
#
# ExampleSimSCData.SCE <- SingleCellExperiment::SingleCellExperiment(assays = list('counts' = ExampleSimSCData))
#
# ## Assuming the spikes are ERCC, otherwise specify which features are spike-ins manuallly using the splitAltExps function.
# myspikes <- grepl("^ERCC-", rownames(ExampleSimSCData.SCE))
# ExampleSimSCData.SCE <- SingleCellExperiment::splitAltExps(ExampleSimSCData.SCE, ifelse(myspikes, "ERCC", "gene"))
#
# DataNorm <- SCnorm(Data = ExampleSimSCData.SCE, Conditions = Conditions,
# PrintProgressPlots = TRUE,
# FilterCellNum = 10, useSpikes=TRUE)
## ----eval=TRUE, fig.height=5, fig.width=10, fig.align='center', out.width='0.8\\textwidth'----
#Colors each sample:
exampleGC <- runif(dim(ExampleSimSCData)[1], 0, 1)
names(exampleGC) <- rownames(ExampleSimSCData)
withinFactorMatrix <- plotWithinFactor(Data = ExampleSimSCData, withinSample = exampleGC)
head(withinFactorMatrix)
## ----eval=TRUE, fig.height=3, fig.width=4, fig.align='center'--------------
#Colors samples by Condition:
Conditions <- rep(c(1,2), each=45)
withinFactorMatrix <- plotWithinFactor(ExampleSimSCData, withinSample = exampleGC,
Conditions=Conditions)
head(withinFactorMatrix)
## ----eval=FALSE------------------------------------------------------------
# # To run correction use:
# DataNorm <- SCnorm(ExampleSimSCData, Conditions,
# PrintProgressPlots = TRUE,
# FilterCellNum = 10, withinSample = exampleGC)
#
## ----eval=TRUE-------------------------------------------------------------
print(sessionInfo())
## ----eval=FALSE------------------------------------------------------------
# library(dynamicTreeCut)
# distM <- as.dist( 1 - cor(BigData, method = 'spearman'))
# htree <- hclust(distM, method='ward.D')
# clusters <- factor(unname(cutreeDynamic(htree, minClusterSize = 50,
# method="tree", respectSmallClusters = FALSE)))
# names(clusters) <- colnames(BigData)
# Conditions = clusters
#
# DataNorm <- SCnorm(Data = BigData,
# Conditions = Conditions,
# PrintProgressPlots = TRUE
# FilterCellNum = 10,
# NCores=3, useZerosToScale=TRUE)
## ----eval=FALSE------------------------------------------------------------
# MedExpr <- apply(Data, 1, function(c) median(c[c != 0]))
# plot(density(log(MedExpr), na.rm=T))
# abline(v=log(c(1,2,3,4,5)))
# # might set FilterExpression equal to one of these values.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.