Nothing
## ----knitr-options, echo=FALSE, message=FALSE, warning=FALSE------------------
library(knitr)
opts_chunk$set(fig.align = 'center', fig.width = 6, fig.height = 5, dev = 'png')
## ---- eval=FALSE--------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
#
# BiocManager::install("SCFA")
## ---- eval=FALSE--------------------------------------------------------------
# if(is(try(reticulate::conda_version()), "try-error")) reticulate::install_miniconda(force = T)
#
# keras::install_keras(method = "conda", tensorflow = "1.10.0")
## ---- eval=TRUE---------------------------------------------------------------
#Load required library
library(SCFA)
library(survival)
# Load example data (GBM dataset), for other dataset, download the rds file from the Data folder at https://bioinformatics.cse.unr.edu/software/scfa/Data/ and load the rds object
data("GBM")
# List of one matrix of microRNA data, other examples would have 3 matrices of 3 data types
dataList <- GBM$data
# Survival information
survival <- GBM$survival
## ---- eval=TRUE---------------------------------------------------------------
# Generating subtyping result
set.seed(1)
subtype <- SCFA(dataList, seed = 1, ncores = 4L)
# Perform survival analysis on the result
coxFit <- coxph(Surv(time = Survival, event = Death) ~ as.factor(subtype), data = survival, ties="exact")
coxP <- round(summary(coxFit)$sctest[3],digits = 20)
print(coxP)
## ---- eval=TRUE---------------------------------------------------------------
# Split data to train and test
set.seed(1)
idx <- sample.int(nrow(dataList[[1]]), round(nrow(dataList[[1]])/2) )
survival$Survival <- survival$Survival - min(survival$Survival) + 1 # Survival time must be positive
trainList <- lapply(dataList, function(x) x[idx, ] )
trainSurvival <- Surv(time = survival[idx,]$Survival, event = survival[idx,]$Death)
testList <- lapply(dataList, function(x) x[-idx, ] )
testSurvival <- Surv(time = survival[-idx,]$Survival, event = survival[-idx,]$Death)
# Perform risk prediction
result <- SCFA.class(trainList, trainSurvival, testList, seed = 1, ncores = 4L)
# Validation using concordance index
c.index <- survival::concordance(coxph(testSurvival ~ result))$concordance
print(c.index)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.