Nothing
GraphDiffusion <- function(
g,
v=V(g),
edge.attr.weight=NULL,
beta=1,
correct.neg=TRUE
) {
# calculates the diffusion distance using the diffusion kernel method
# Diffusion Kernels on Graphs and Other Discrete Structures, Kondor and Lafferty, 2002
# the named numeric distance matrix is returned
# any edge attribute specified should be the weight of the edge (higher weights -> more significant) not the distance
if (class(v) != "igraph.vs") v <- AsiGraph(v, g) # if v is not an igraph-class object, convert
if (vcount(g) == 1) return(matrix(0, 1, 1, dimnames=list(v$name, V(g)$name))) # if only a single vertex is contained within the graph, return a single cell matrix
# obtain the sparse unamed adjacency matrix
adj <- get.adjacency(g, attr=edge.attr.weight, names=F, sparse=T, type="both")
# compute the distance matrix for each of the connected clusters of vertices
D <- array(Inf, dim=rep(vcount(g), 2))
c <- clusters(g)
for (i in 1:c$no) {
indices <- which(c$membership == i)
D[indices, indices] <- Diffusionfct(adj[indices, indices], beta, correct.neg)
}
diag(D) <- 0 # ensure that the diagonal is 0
# return rows for each vertex in v
D <- as.matrix(D[v, ])
dimnames(D) <- list(V(g)$name[as.numeric(v)], V(g)$name)
D
}
Diffusionfct <- function(
adj,
beta,
correct.neg
) {
# calculates the diffusion-kernel based distance matrix for an adjacency matrix
# if the adjacency matrix contains only a single gene, return a 1x1 matrix containing 0
if (is.null(dim(adj))) return(matrix(0, 1, 1))
# compute the diffusion kernal
H <- adj - Diagonal(x=apply(adj, 1, sum))
x <- eigen(H, symmetric=T)
K <- x$vectors %*% diag(exp(beta * x$values)) %*% t(x$vectors)
Dsub <- outer(diag(K), diag(K), "+") - 2*K
# correct negative distances
if (any(Dsub < 0) && correct.neg){
warning("negative distances set to zero")
Dsub[Dsub < 0] <- 0
}
sqrt(Dsub)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.